PURPOSE: There are limited treatment options for advanced melanoma that have progressed during or after immune checkpoint inhibitor therapy. Intratumoral (IT) immunotherapy may improve tumor-specific immune activation by promoting local tumor antigen presentation while avoiding systemic toxicities. The phase 3 ILLUMINATE-301 study (ClinicalTrials.gov identifier: NCT03445533) evaluated tilsotolimod, a Toll-like receptor-9 agonist, with or without ipilimumab in patients with anti-PD-1 advanced refractory melanoma. METHODS: Patients with unresectable stage III-IV melanoma that progressed during or after anti-PD-1 therapy were randomly assigned 1:1 to receive 24 weeks of tilsotolimod plus ipilimumab or 10 weeks of ipilimumab alone. Nine IT injections of tilsotolimod were administered to a single designated lesion over 24 weeks. Intravenous ipilimumab 3 mg/kg was administered once every 3 weeks from week 2 in the tilsotolimod arm and week 1 in the ipilimumab arm. The primary end point was efficacy measured using objective response rate (ORR; independent review) and overall survival (OS). RESULTS: A total of 481 patients received tilsotolimod plus ipilimumab (n = 238) or ipilimumab alone (n = 243). ORRs were 8.8% in the tilsotolimod arm and 8.6% in the ipilimumab arm, with disease control rates of 34.5% and 27.2%, respectively. Median OS was 11.6 months in the tilsotolimod arm and 10 months in the ipilimumab arm (hazard ratio, 0.96 [95% CI, 0.77 to 1.19]; P = .7). Grade ≥3 treatment-emergent adverse events occurred in 61.1% and 55.5% of patients in the tilsotolimod and ipilimumab arms, respectively. CONCLUSION: Combining IT tilsotolimod with ipilimumab did not significantly improve the ORR or OS compared with ipilimumab alone in patients with anti-PD-1 advanced refractory melanoma.
- MeSH
- dospělí MeSH
- ipilimumab * aplikace a dávkování škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- melanom * farmakoterapie patologie imunologie mortalita MeSH
- nádory kůže * farmakoterapie patologie imunologie MeSH
- oligonukleotidy MeSH
- protokoly protinádorové kombinované chemoterapie * terapeutické užití škodlivé účinky MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
BACKGROUND: The genetic and epigenetic alterations observed in acute myeloid leukemia (AML) contribute to its heterogeneity, influencing disease progression response to therapy, and patient outcomes. The use of antisense oligonucleotides (ASOs) technology allows for the design of oligonucleotide inhibitors based on gene sequence information alone, enabling precise targeting of key molecular pathways or specific genes implicated in AML. METHODS AND RESULTS: Midostaurin, a FLT3 specific inhibitor and ASOs targeting particular genes, exons, or mutations was conducted using AML models. This ASOs treatment was designed to bind to exon 7 of the MBNL1 (muscleblind-like) gene. Another target was the FLT3 gene, focusing on two aspects: (a) FLT3-ITD (internal tandem duplication), to inhibit the expression of this aberrant gene form, and (b) the FLT3 in general. Treated and untreated cells were analyzed using quantitative PCR (qPCR), dot blot, and Raman spectroscopy. This study contrasts midostaurin with ASOs that inhibit FLT3 protein production or its isoforms via mRNA degradation. A trend of increased FLT3 expression was observed in midostaurin-treated cells, while ASO-treated cells showed decreased expression, though these changes were not statistically significant. CONCLUSIONS: In AML, exon 7 of MBNL1 is involved in several cellular processes and in this study, exon 7 of MBNL1 was targeted for method optimization, with the highest block of the exon 7 gene variant observed 48 h post-transfection. Midostaurin, a multitargeted kinase inhibitor, acts against the receptor tyrosine kinase FLT3, a critical molecule in AML pathogenesis. While midostaurin blocks FLT3 signaling pathways, it paradoxically increases FLT3 expression.
- MeSH
- akutní myeloidní leukemie * genetika farmakoterapie MeSH
- antisense oligonukleotidy * farmakologie genetika MeSH
- exony genetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- regulace genové exprese u leukemie účinky léků MeSH
- staurosporin * analogy a deriváty farmakologie MeSH
- tyrosinkinasa 3 podobná fms * genetika antagonisté a inhibitory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is essential for correct functioning of innate immune responses. The ADAR1p110 isoform is mainly nuclear and ADAR1p150, which is interferon (IFN) inducible, is predominately cytoplasmic. Using three different methods - co-immunoprecipitation (co-IP) of endogenous ADAR1, Strep-tag co-IP and BioID with individual ADAR1 isoforms - a comprehensive interactome was generated during both homeostasis and the IFN response. Both known and novel interactors as well as editing regulators were identified. Nuclear proteins were detected as stable interactors with both ADAR1 isoforms. In contrast, BioID identified distinct protein networks for each ADAR1 isoform, with nuclear components observed with ADAR1p110 and components of cytoplasmic cellular condensates with ADAR1p150. RNase A digestion distinguished between distal and proximal interactors, as did a double-stranded RNA (dsRNA)-binding mutant of ADAR1 which demonstrated the importance of dsRNA binding for ADAR1 interactions. IFN treatment did not affect the core ADAR1 interactomes but resulted in novel interactions, the majority of which are proximal interactions retained after RNase A treatment. Short treatment with high molecular weight poly(I:C) during the IFN response resulted in dsRNA-binding-dependent changes in the proximal protein network of ADAR1p110 and association of the ADAR1p150 proximal protein network with some components of antiviral stress granules.
- MeSH
- adenosindeaminasa * metabolismus genetika MeSH
- buněčné jádro * metabolismus MeSH
- cytoplazma * metabolismus MeSH
- dvouvláknová RNA metabolismus genetika MeSH
- editace RNA MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- interferony metabolismus genetika MeSH
- lidé MeSH
- mapy interakcí proteinů MeSH
- poly I-C farmakologie MeSH
- protein - isoformy * metabolismus genetika MeSH
- proteiny vázající RNA * metabolismus genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Unmet medical needs remain in patients with red blood cell transfusion-dependent (RBC-TD) lower-risk myelodysplastic syndromes (LR-MDS) who are not responding to or are ineligible for erythropoiesis-stimulating agents (ESAs). Imetelstat, a competitive telomerase inhibitor, showed promising results in a phase 2 trial. We aimed to compare the RBC transfusion independence (RBC-TI) rate with imetelstat versus placebo in patients with RBC-TD LR-MDS. METHODS: In phase 3 of IMerge, a double-blind, placebo-controlled trial conducted in 118 sites including university hospitals, cancer centres, and outpatient clinics in 17 countries, patients (aged ≥18 years) with ESA-relapsed, ESA-refractory, or ESA-ineligible LR-MDS (low or intermediate-1 risk disease as per International Prognostic Scoring System [IPSS] criteria) were randomly assigned via a computer-generated schedule (2:1) to receive imetelstat 7·5 mg/kg or placebo, administered as a 2-h intravenous infusion, every 4 weeks until disease progression, unacceptable toxic effects, or withdrawal of consent. Randomisation was stratified by previous RBC transfusion burden and IPSS risk group. Patients, investigators, and those analysing the data were masked to group assignment. The primary endpoint was 8-week RBC-TI, defined as the proportion of patients without RBC transfusions for at least 8 consecutive weeks starting on the day of randomisation until subsequent anti-cancer therapy, if any. Primary efficacy analyses were performed in the intention-to-treat population, and safety analyses were conducted in patients who received at least one dose of trial medication or placebo. This trial is registered with ClinicalTrials.gov (NCT02598661; substudy active and recruiting). FINDINGS: Between Sept 11, 2019, and Oct 13, 2021, 178 patients were enrolled and randomly assigned (118 to imetelstat and 60 to placebo). 111 (62%) were male and 67 (38%) were female. 91 (77%) of 118 patients had discontinued treatment by data cutoff in the imetelstat group versus 45 (75%) in the placebo group; a further one patient in the placebo group did not receive treatment. Median follow-up was 19·5 months (IQR 12·0-23·4) in the imetelstat group and 17·5 months (12·1-22·7) in the placebo group. In the imetelstat group, 47 (40% [95% CI 30·9-49·3]) patients had an RBC-TI of at least 8 weeks versus nine (15% [7·1-26·6]) in the placebo group (rate difference 25% [9·9 to 36·9]; p=0·0008). Overall, 107 (91%) of 118 patients receiving imetelstat and 28 (47%) of 59 patients receiving placebo had grade 3-4 treatment-emergent adverse events. The most common treatment-emergent grade 3-4 adverse events in patients taking imetelstat were neutropenia (80 [68%] patients who received imetelstat vs two [3%] who received placebo) and thrombocytopenia (73 [62%] vs five [8%]). No treatment-related deaths were reported. INTERPRETATION: Imetelstat offers a novel mechanism of action with durable transfusion independence (approximately 1 year) and disease-modifying activity for heavily transfused patients with LR-MDS who are not responding to or are ineligible for ESAs. FUNDING: Janssen Research & Development before April 18, 2019, and Geron Corporation thereafter.
- MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- erytropoéza MeSH
- lidé MeSH
- mladiství MeSH
- myelodysplastické syndromy * farmakoterapie MeSH
- oligonukleotidy * MeSH
- protokoly protinádorové kombinované chemoterapie MeSH
- trombocytopenie * farmakoterapie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- randomizované kontrolované studie MeSH
Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2'-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames.
- MeSH
- antisense oligonukleotidy * terapeutické užití genetika MeSH
- genetické nemoci vrozené genetika terapie MeSH
- lidé MeSH
- morfolino terapeutické užití genetika MeSH
- mutace * MeSH
- sestřih RNA * MeSH
- vzácné nemoci * genetika farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- Tislelizumab, tofersen, Danikopan,
- MeSH
- aminopyridiny farmakologie terapeutické užití MeSH
- amyotrofická laterální skleróza farmakoterapie MeSH
- chronická renální insuficience farmakoterapie MeSH
- diabetes mellitus farmakoterapie MeSH
- dlouhodobě působící inzulin farmakologie terapeutické užití MeSH
- humanizované monoklonální protilátky farmakologie terapeutické užití MeSH
- lidé MeSH
- oligonukleotidy farmakologie terapeutické užití MeSH
- paroxysmální hemoglobinurie farmakoterapie MeSH
- prolin farmakologie terapeutické užití MeSH
- registrace * MeSH
- schvalování léčiv * MeSH
- Check Tag
- lidé MeSH
Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 μM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.
- MeSH
- apoptóza * účinky léků MeSH
- bcr-abl fúzní proteiny * genetika antagonisté a inhibitory metabolismus MeSH
- chemorezistence * účinky léků MeSH
- chronická myeloidní leukemie * farmakoterapie genetika patologie MeSH
- dasatinib farmakologie MeSH
- imatinib mesylát * farmakologie terapeutické užití MeSH
- inhibitory proteinkinas * farmakologie MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- oligonukleotidy * farmakologie MeSH
- protinádorové látky farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.
- MeSH
- indolamin-2,3,-dioxygenasa metabolismus MeSH
- kynurenin * metabolismus MeSH
- lidé MeSH
- lipopolysacharidy toxicita MeSH
- placenta * metabolismus MeSH
- poly I metabolismus MeSH
- serotonin metabolismus MeSH
- těhotenství MeSH
- tryptofan metabolismus MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Nitrile imines produced by photodissociation of 2,5-diaryltetrazoles undergo cross-linking reactions with amide groups in peptide-tetrazole (tet-peptide) conjugates and a tet-peptide-dinucleotide complex. Tetrazole photodissociation in gas-phase ions is efficient, achieving ca. 50% conversion with 2 laser pulses at 250 nm. The formation of cross-links was detected by CID-MS3 that showed structure-significant dissociations by loss of side-chain groups and internal peptide segments. The structure and composition of cross-linking products were established by a combination of UV-vis action spectroscopy and cyclic ion mobility mass spectrometry (c-IMS). The experimental absorption bands were found to match the bands calculated for vibronic absorption spectra of nitrile imines and cross-linked hydrazone isomers. The calculated collision cross sections (CCSth) for these ions were related to the matching experimental CCSexp from multipass c-IMS measurements. Loss of N2 from tet-peptide conjugates was calculated to be a mildly endothermic reaction with ΔH0 = 80 kJ mol-1 in the gas phase. The excess energy in the photolytically formed nitrile imine is thought to drive endothermic proton transfer, followed by exothermic cyclization to a sterically accessible peptide amide group. The exothermic nitrile imine reaction with peptide amides is promoted by proton transfer and may involve an initial [3 + 2] cycloaddition followed by cleavage of the oxadiazole intermediate. Nucleophilic groups, such as cysteine thiol, did not compete with the amide cyclization. Nitrile imine cross-linking to 2'-deoxycytidylguanosine was found to be >80% efficient and highly specific in targeting guanine. The further potential for exploring nitrile-imine cross-linking for biomolecular structure analysis is discussed.