An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of Bordetella pertussis

. 2025 Dec ; 14 (1) : 2451718. [epub] 20250127

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39781897

Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In Bordetella pertussis, the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global B. pertussis population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of B. pertussis. Here, we describe the regulatory RNA Rfi2, which is transcribed from the Pout promoter of the IS481 gene BP1118 antisense to the adjacent fim2 gene encoding the major serotype 2 fimbrial subunit of B. pertussis. Among the classical bordetellae, Rfi2 is unique to B. pertussis, suggesting its specific role in virulence. We show that Rfi2 RNA attenuates fim2 transcription and, consequently, the production of the Fim2 protein. Interestingly, the mutant that does not produce Rfi2 displayed significantly increased cytotoxicity towards human macrophages compared to the parental strain. This observation suggests that the Rfi2-mediated reduction in cytotoxicity represents an evolutionary adaptation of B. pertussis that fine-tunes its interaction with the human host. Given the immunogenicity of Fim2, we further hypothesize that Rfi2-mediated modulation of Fim2 production contributes to immune evasion. To our knowledge, Rfi2 represents the first functionally characterized IS element-driven antisense RNA that modulates the expression of a virulence gene.

Zobrazit více v PubMed

Siguier P, Gourbeyre E, Chandler M.. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38(5):865–891. doi:10.1111/1574-6976.12067 PubMed DOI PMC

Vandecraen J, Chandler M, Aertsen A, et al. . The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017;43(6):709–730. doi:10.1080/1040841X.2017.1303661 PubMed DOI

Parkhill J, Thomson N.. Evolutionary strategies of human pathogens. Cold Spring Harbor Symp Quant Biol. 2003;68:151–158. doi:10.1101/sqb.2003.68.151 PubMed DOI

Wang A, Roth JR.. Activation of silent genes by transposons Tn5 and Tn10. Genetics. 1988;120(4):875–885. doi:10.1093/genetics/120.4.875 PubMed DOI PMC

Safi H, Barnes PF, Lakey DL, et al. . IS6110 functions as a mobile, monocyte-activated promoter in mycobacterium tuberculosis. Mol Microbiol. 2004;52(4):999–1012. doi:10.1111/j.1365-2958.2004.04037.x PubMed DOI

Prentki P, Teter B, Chandler M, et al. . Functional promoters created by the insertion of transposable element IS1. J Mol Biol. 1986;191(3):383–393. doi:10.1016/0022-2836(86)90134-8 PubMed DOI

Amman F, D'Halluin A, Antoine R, et al. . Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of Bordetella pertussis. RNA Biol. 2018;15(7):967–975. doi:10.1080/15476286.2018.1462655 PubMed DOI PMC

Dienstbier A, Amman F, Petrackova D, et al. . Comparative omics analysis of historic and recent isolates of Bordetella pertussis and effects of genome rearrangements on evolution. Emerg Infect Dis. 2021 Jan;27(1):57–68. doi:10.3201/eid2701.191541 PubMed DOI PMC

Brinig MM, Cummings CA, Sanden GN, et al. . Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol. 2006;188(7):2375–2382. doi:10.1128/JB.188.7.2375-2382.2006 PubMed DOI PMC

Mattoo S, Cherry JD.. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005 Apr;18(2):326–382. doi:10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Belcher T, Dubois V, Rivera-Millot A, et al. . Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence. 2021 Dec;12(1):2608–2632. doi:10.1080/21505594.2021.1980987 PubMed DOI PMC

Willems R, Paul A, van der Heide HG, et al. . Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J. 1990 Sep;9(9):2803–2809. doi:10.1002/j.1460-2075.1990.tb07468.x PubMed DOI PMC

Chen Q, Decker KB, Boucher PE, et al. . Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA. Mol Microbiol. 2010 Sep;77(5):1326–1340. doi:10.1111/j.1365-2958.2010.07293.x PubMed DOI PMC

Cotter PA, Jones AM.. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 2003 Aug;11(8):367–373. doi:10.1016/S0966-842X(03)00156-2 PubMed DOI

Lacey BW. Antigenic modulation of Bordetella pertussis. J Hyg. 1960 Mar;58:57–93. doi:10.1017/S0022172400038134 PubMed DOI PMC

Melton AR, Weiss AA.. Characterization of environmental regulators of Bordetella pertussis. Infect Immun. 1993 Mar;61(3):807–815. doi:10.1128/iai.61.3.807-815.1993 PubMed DOI PMC

Seydlova G, Beranova J, Bibova I, et al. . The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches. J Biol Chem. 2017 May 12;292(19):8048–8058. doi:10.1074/jbc.M117.781559 PubMed DOI PMC

Crowcroft NS, Stein C, Duclos P, et al. . How best to estimate the global burden of pertussis? Lancet Infect Dis. 2003;3(7):413–418. doi:10.1016/S1473-3099(03)00669-8 PubMed DOI

Sealey KL, Belcher T, Preston A.. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infect Genet Evol. 2016;40:136–143. doi:10.1016/j.meegid.2016.02.032 PubMed DOI

Smits K, Pottier G, Smet J, et al. . Different T cell memory in preadolescents after whole-cell or acellular pertussis vaccination. Vaccine. 2013;32(1):111–118. doi:10.1016/j.vaccine.2013.10.056 PubMed DOI

Warfel JM, Zimmerman LI, Merkel TJ.. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA. 2014;111(2):787–792. doi:10.1073/pnas.1314688110 PubMed DOI PMC

Althouse BM, Scarpino SV.. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015;13(1):146–146. doi:10.1186/s12916-015-0382-8 PubMed DOI PMC

Higgs R, Higgins SC, Ross PJ, et al. . Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012;5(5):485–500. doi:10.1038/mi.2012.54 PubMed DOI

Xu Y, Liu B, Gröndahl-Yli-Hannuksila K, et al. . Whole-genome sequencing reveals the effect of vaccination on the evolution of Bordetella pertussis. Sci Rep. 2015;5(1):12888–12888. doi:10.1038/srep12888 PubMed DOI PMC

Parkhill J, Sebaihia M, Preston A, et al. . Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35(1):32–40. doi:10.1038/ng1227 PubMed DOI

Queenan AM, Cassiday PK, Evangelista A.. Pertactin-negative variants of Bordetella pertussis in the United States. N Engl J Med. 2013 Feb 7;368(6):583–584. doi:10.1056/NEJMc1209369 PubMed DOI PMC

Williams MM, Sen K, Weigand MR, et al. . Bordetella pertussis strain lacking pertactin and pertussis toxin. Emerg Infect Dis. 2016 Feb;22(2):319–322. doi:10.3201/eid2202.151332 PubMed DOI PMC

Barkoff AM, Mertsola J, Guillot S, et al. . Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. Clin Vaccine Immunol. 2012 Oct;19(10):1703–1704. doi:10.1128/CVI.00367-12 PubMed DOI PMC

Bouchez V, Hegerle N, Strati F, et al. . New data on vaccine antigen deficient Bordetella pertussis isolates. Vaccines. 2015 Sep 14;3(3):751–770. doi:10.3390/vaccines3030751 PubMed DOI PMC

DeShazer D, Wood GE, Friedman RL.. Molecular characterization of catalase from Bordetella pertussis: identification of the katA promoter in an upstream insertion sequence. Mol Microbiol. 1994;14(1):123–130. doi:10.1111/j.1365-2958.1994.tb01272.x PubMed DOI

Han H-J, Kuwae A, Abe A, et al. . Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis. PLoS One. 2011;6(3):e17797. doi:10.1371/journal.pone.0017797 PubMed DOI PMC

Gorringe AR, Vaughan TE.. Bordetella pertussis fimbriae (Fim): relevance for vaccines. Expert Rev Vaccines. 2014;13(10):1205–1214. doi:10.1586/14760584.2014.930667 PubMed DOI

Stainer DW, Scholte MJ.. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol. 1970;63(2):211–220. doi:10.1099/00221287-63-2-211 PubMed DOI

Antoine R, Locht C.. Roles of the disulfide bond and the carboxy-terminal region of the S1 subunit in the assembly and biosynthesis of pertussis toxin. Infect Immun. 1990;58(6):1518–1526. doi:10.1128/iai.58.6.1518-1526.1990 PubMed DOI PMC

Cotter PA, Miller JF.. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun. 1994 Aug;62(8):3381–3390. doi:10.1128/iai.62.8.3381-3390.1994 PubMed DOI PMC

Kovach ME, Phillips RW, Elzer PH, et al. . pBBR1MCS: a broad-host-range cloning vector. Biotechniques. 1994 May;16(5):800–802. PubMed

Beauregard A, Smith EA, Petrone BL, et al. . Identification and characterization of small RNAs in Yersinia pestis. RNA Biol. 2013 Mar;10(3):397–405. doi:10.4161/rna.23590 PubMed DOI PMC

Farman MR, Petrackova D, Kumar D, et al. . Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment. Emerg Microbes Infect. 2023 Dec;12(1):e2146536. doi:10.1080/22221751.2022.2146536 PubMed DOI PMC

Simons RW, Hoopes BC, McClure WR, et al. . Three promoters near the termini of IS10: pIN, pOUT, and pIII. Cell. 1983 Sep;34(2):673–682. doi:10.1016/0092-8674(83)90400-2 PubMed DOI

Kittle JD, Simons RW, Lee J, et al. . Insertion sequence IS10 anti-sense pairing initiates by an interaction between the 5’ end of the target RNA and a loop in the anti-sense RNA. J Mol Biol. 1989;210(3):561–572. doi:10.1016/0022-2836(89)90132-0 PubMed DOI

Rombel IT, Sykes KF, Rayner S, et al. . ORF-FINDER: a vector for high-throughput gene identification. Gene. 2002;282(1–2):33–41. doi:10.1016/S0378-1119(01)00819-8 PubMed DOI

Altschul SF, Gish W, Miller W, et al. . Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi:10.1016/S0022-2836(05)80360-2 PubMed DOI

Salis HM. The ribosome binding site calculator. Methods Enzymol. 2011;498:19–42. doi:10.1016/B978-0-12-385120-8.00002-4. PubMed DOI

Boinett CJ, Harris SR, Langridge GC, et al. . Complete genome sequence of Bordetella pertussis D420. Genome Announc. 2015 Jun 11;3(3):e00657–15. doi:10.1128/genomeA.00657-15 PubMed DOI PMC

Bart MJ, Zeddeman A, van der Heide HG, et al. . Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages. Genome Announc. 2014 Dec 24;2(6):e01301–14 doi:10.1128/genomeA.01301-14. PubMed DOI PMC

Hazenbos WL, van den Berg BM, Geuijen CW, et al. . Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. J Immunol. 1995 Oct 15;155(8):3972–3978. doi:10.4049/jimmunol.155.8.3972 PubMed DOI

Case CC, Simons EL, Simons RW.. The IS10 transposase mRNA is destabilized during antisense RNA control. EMBO J. 1990;9(4):1259–1266. doi:10.1002/j.1460-2075.1990.tb08234.x PubMed DOI PMC

Ma C, Simons RW.. The IS10 antisense RNA blocks ribosome binding at the transposase translation initiation site. EMBO J. 1990;9(4):1267–1274. doi:10.1002/j.1460-2075.1990.tb08235.x PubMed DOI PMC

Simons RW, Kleckner N.. Translational control of IS10 transposition. Cell. 1983;34(2):683–691. doi:10.1016/0092-8674(83)90401-4 PubMed DOI

Diavatopoulos DA, Cummings CA, Schouls LM, et al. . Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005 Dec;1(4):e45. doi:10.1371/journal.ppat.0010045 PubMed DOI PMC

Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol. 2007 Apr;10(2):102–109. doi:10.1016/j.mib.2007.03.012 PubMed DOI

van den Berg BM, Beekhuizen H, Willems RJ, et al. . Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun. 1999 Mar;67(3):1056–1062. doi:10.1128/IAI.67.3.1056-1062.1999 PubMed DOI PMC

Scheller EV, Melvin JA, Sheets AJ, et al. . Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. mBio. 2015 May 26;6(3):e00500–15. doi:10.1128/mBio.00500-15 PubMed DOI PMC

Edwards JA, Groathouse NA, Boitano S.. Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A. Infect Immun. 2005 Jun;73(6):3618–3626. doi:10.1128/IAI.73.6.3618-3626.2005 PubMed DOI PMC

Bayram J, Malcova I, Sinkovec L, et al. . Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog. 2020 Aug;16(8):e1008512. doi:10.1371/journal.ppat.1008512 PubMed DOI PMC

Queenan AM, Dowling DJ, Cheng WK, et al. . Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine. 2019 Jan 3;37(1):80–89. doi:10.1016/j.vaccine.2018.11.028 PubMed DOI PMC

Rodriguez ME, Hellwig SM, Perez Vidakovics ML, et al. . Bordetella pertussis attachment to respiratory epithelial cells can be impaired by fimbriae-specific antibodies. FEMS Immunol Med Microbiol. 2006 Feb;46(1):39–47. doi:10.1111/j.1574-695X.2005.00001.x PubMed DOI

Bibova I, Hot D, Keidel K, et al. . Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for type III secretion system functionality. RNA Biol. 2015;12(2):175–185. doi:10.1080/15476286.2015.1017237 PubMed DOI PMC

Petrackova D, Farman MR, Amman F, et al. . Transcriptional profiling of human macrophages during infection with Bordetella pertussis. RNA Biol. 2020 May;17(5):731–742. doi:10.1080/15476286.2020.1727694 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace