Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32776984
PubMed Central
PMC7446853
DOI
10.1371/journal.ppat.1008512
PII: PPATHOGENS-D-20-00592
Knihovny.cz E-zdroje
- MeSH
- alanin genetika metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella pertussis fyziologie MeSH
- HeLa buňky MeSH
- lidé MeSH
- mutace MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- pertuse genetika mikrobiologie patologie MeSH
- regulace genové exprese u bakterií * MeSH
- sekreční systém typu III genetika metabolismus MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alanin MeSH
- bakteriální proteiny MeSH
- sekreční systém typu III MeSH
Bordetella bronchiseptica and Bordetella pertussis are closely related respiratory pathogens that evolved from a common bacterial ancestor. While B. bronchiseptica has an environmental reservoir and mostly establishes chronic infections in a broad range of mammals, B. pertussis is a human-specific pathogen causing acute pulmonary pertussis in infants and whooping cough illness in older humans. Both species employ a type III secretion system (T3SS) to inject a cytotoxic BteA effector protein into host cells. However, compared to the high BteA-mediated cytotoxicity of B. bronchiseptica, the cytotoxicity induced by B. pertussis BteA (Bp BteA) appears to be quite low and this has been attributed to the reduced T3SS gene expression in B. pertussis. We show that the presence of an alanine residue inserted at position 503 (A503) of Bp BteA accounts for its strongly attenuated cytotoxic potency. The deletion of A503 from Bp BteA greatly enhanced the cytotoxic activity of B. pertussis B1917 on mammalian HeLa cells and expression of Bp BteAΔA503 was highly toxic to Saccharomyces cerevisiae cells. Vice versa, insertion of A503 into B. bronchiseptica BteA (Bb BteA) strongly decreased its cytotoxicity to yeast and HeLa cells. Moreover, the production of Bp BteAΔA503 increased virulence of B. pertussis B1917 in the mouse model of intranasal infection (reduced LD50) but yielded less inflammatory pathology in infected mouse lungs at sublethal infectious doses. This suggests that A503 insertion in the T3SS effector Bp BteA may represent an evolutionary adaptation that fine-tunes B. pertussis virulence and host immune response.
Zobrazit více v PubMed
Burns DL, Meade BD, Messionnier NE. Pertussis resurgence: perspectives from the Working Group Meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge. J Infect Dis. 2014;209 Suppl 1:S32–5. 10.1093/infdis/jit491 . PubMed DOI
Sealey KL, Belcher T, Preston A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infect Genet Evol. 2016;40:136–43. 10.1016/j.meegid.2016.02.032 . PubMed DOI
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18(2):326–82. 10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC
Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis. 2008;47(3):328–38. 10.1086/589753 . PubMed DOI
Cullinane LC, Alley MR, Marshall RB, Manktelow BW. Bordetella parapertussis from lambs. N Z Vet J. 1987;35(10):175 10.1080/00480169.1987.35433 . PubMed DOI
Heininger U, Stehr K, Schmitt-Grohe S, Lorenz C, Rost R, Christenson PD, et al. Clinical characteristics of illness caused by Bordetella parapertussis compared with illness caused by Bordetella pertussis. Pediatr Infect Dis J. 1994;13(4):306–9. 10.1097/00006454-199404000-00011 . PubMed DOI
Karalius VP, Rucinski SL, Mandrekar JN, Patel R. Bordetella parapertussis outbreak in Southeastern Minnesota and the United States, 2014. Medicine (Baltimore). 2017;96(20):e6730 10.1097/MD.0000000000006730 PubMed DOI PMC
Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. Plos Pathog. 2005;1(4):e45 10.1371/journal.ppat.0010045 PubMed DOI PMC
Goodnow RA. Biology of Bordetella bronchiseptica. Microbiol Rev. 1980;44(4):722–38. PubMed PMC
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35(1):32–40. 10.1038/ng1227 . PubMed DOI
Buboltz AM, Nicholson TL, Weyrich LS, Harvill ET. Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica. Infect Immun. 2009;77(9):3969–77. 10.1128/IAI.01362-08 PubMed DOI PMC
Ahuja U, Liu M, Tomida S, Park J, Souda P, Whitelegge J, et al. Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol. 2012;12:167 10.1186/1471-2180-12-167 PubMed DOI PMC
Ahuja U, Shokeen B, Cheng N, Cho Y, Blum C, Coppola G, et al. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-sigma factor. Proc Natl Acad Sci U S A. 2016;113(9):2341–8. 10.1073/pnas.1600320113 PubMed DOI PMC
Galan JE, Waksman G. Protein-Injection Machines in Bacteria. Cell. 2018;172(6):1306–18. 10.1016/j.cell.2018.01.034 PubMed DOI PMC
Nicholson TL, Brockmeier SL, Loving CL, Register KB, Kehrli ME Jr., Shore SM. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun. 2014;82(3):1092–103. 10.1128/IAI.01115-13 PubMed DOI PMC
Yuk MH, Harvill ET, Cotter PA, Miller JF. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol. 2000;35(5):991–1004. 10.1046/j.1365-2958.2000.01785.x . PubMed DOI
Yuk MH, Harvill ET, Miller JF. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol. 1998;28(5):945–59. 10.1046/j.1365-2958.1998.00850.x . PubMed DOI
Skinner JA, Pilione MR, Shen H, Harvill ET, Yuk MH. Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J Immunol. 2005;175(7):4647–52. 10.4049/jimmunol.175.7.4647 . PubMed DOI
Pilione MR, Harvill ET. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect Immun. 2006;74(2):1043–9. 10.1128/IAI.74.2.1043-1049.2006 PubMed DOI PMC
Stockbauer KE, Foreman-Wykert AK, Miller JF. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 2003;5(2):123–32. 10.1046/j.1462-5822.2003.00260.x . PubMed DOI
Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol. 2005;58(1):267–79. 10.1111/j.1365-2958.2005.04823.x . PubMed DOI
French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol. 2009;11(12):1735–49. 10.1111/j.1462-5822.2009.01361.x PubMed DOI PMC
Gaillard ME, Bottero D, Castuma CE, Basile LA, Hozbor D. Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect Immun. 2011;79(9):3677–82. 10.1128/IAI.00136-11 PubMed DOI PMC
Fennelly NK, Sisti F, Higgins SC, Ross PJ, van der Heide H, Mooi FR, et al. Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun. 2008;76(3):1257–66. 10.1128/IAI.00836-07 PubMed DOI PMC
Hegerle N, Rayat L, Dore G, Zidane N, Bedouelle H, Guiso N. In-vitro and in-vivo analysis of the production of the Bordetella type three secretion system effector A in Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Microbes Infect. 2013;15(5):399–408. 10.1016/j.micinf.2013.02.006 . PubMed DOI
Shrivastava R, Miller JF. Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol. 2009;12(1):88–93. 10.1016/j.mib.2009.01.001 PubMed DOI PMC
Skopova K, Tomalova B, Kanchev I, Rossmann P, Svedova M, Adkins I, et al. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infect Immun. 2017;85(6). 10.1128/IAI.00937-16 PubMed DOI PMC
Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878 10.1038/s41598-017-17204-5 PubMed DOI PMC
Taylor-Mulneix DL, Bendor L, Linz B, Rivera I, Ryman VE, Dewan KK, et al. Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 2017;15(4):e2000420 10.1371/journal.pbio.2000420 PubMed DOI PMC
Hamidou Soumana I, Linz B, Harvill ET. Environmental Origin of the Genus Bordetella. Front Microbiol. 2017;8:28 10.3389/fmicb.2017.00028 PubMed DOI PMC
Linz B, Ivanov YV, Preston A, Brinkac L, Parkhill J, Kim M, et al. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics. 2016;17(1):767 10.1186/s12864-016-3112-5 PubMed DOI PMC
Park J, Zhang Y, Chen C, Dudley EG, Harvill ET. Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology. 2015;161(12):2328–40. 10.1099/mic.0.000197 PubMed DOI PMC
Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC, Ahuja U, et al. Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics. 2012;13:545 10.1186/1471-2164-13-545 PubMed DOI PMC
Ryan LK, Wu J, Schwartz K, Yim S, Diamond G. beta-Defensins Coordinate In Vivo to Inhibit Bacterial Infections of the Trachea. Vaccines (Basel). 2018;6(3). 10.3390/vaccines6030057 PubMed DOI PMC
Legarda D, Klein-Patel ME, Yim S, Yuk MH, Diamond G. Suppression of NF-kappaB-mediated beta-defensin gene expression in the mammalian airway by the Bordetella type III secretion system. Cell Microbiol. 2005;7(4):489–97. 10.1111/j.1462-5822.2004.00473.x PubMed DOI PMC
Stainer DW, Scholte MJ. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol. 1970;63(2):211–20. 10.1099/00221287-63-2-211 . PubMed DOI
Hanawa T, Kamachi K, Yonezawa H, Fukutomi T, Kawakami H, Kamiya S. Glutamate Limitation, BvgAS Activation, and (p)ppGpp Regulate the Expression of the Bordetella pertussis Type 3 Secretion System. J Bacteriol. 2016;198(2):343–51. 10.1128/JB.00596-15 PubMed DOI PMC
Kurushima J, Kuwae A, Abe A. Iron starvation regulates the type III secretion system in Bordetella bronchiseptica. Microbiol Immunol. 2012;56(6):356–62. 10.1111/j.1348-0421.2012.00442.x . PubMed DOI
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5. 10.1038/nmeth.1318 . PubMed DOI
Chen DC, Yang BC, Kuo TT. One-step transformation of yeast in stationary phase. Curr Genet. 1992;21(1):83–4. 10.1007/BF00318659 . PubMed DOI
Volland C, Urban-Grimal D, Geraud G, Haguenauer-Tsapis R. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem. 1994;269(13):9833–41. . PubMed
Tyson AL, Hilton ST, Andreae LC. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy. Int J Pharm. 2015;494(2):651–6. 10.1016/j.ijpharm.2015.03.042 PubMed DOI PMC
The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis
BopN is a Gatekeeper of the Bordetella Type III Secretion System
Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation
Bordetella Type III Secretion Injectosome and Effector Proteins