Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue

. 2020 Aug ; 16 (8) : e1008512. [epub] 20200810

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32776984
Odkazy

PubMed 32776984
PubMed Central PMC7446853
DOI 10.1371/journal.ppat.1008512
PII: PPATHOGENS-D-20-00592
Knihovny.cz E-zdroje

Bordetella bronchiseptica and Bordetella pertussis are closely related respiratory pathogens that evolved from a common bacterial ancestor. While B. bronchiseptica has an environmental reservoir and mostly establishes chronic infections in a broad range of mammals, B. pertussis is a human-specific pathogen causing acute pulmonary pertussis in infants and whooping cough illness in older humans. Both species employ a type III secretion system (T3SS) to inject a cytotoxic BteA effector protein into host cells. However, compared to the high BteA-mediated cytotoxicity of B. bronchiseptica, the cytotoxicity induced by B. pertussis BteA (Bp BteA) appears to be quite low and this has been attributed to the reduced T3SS gene expression in B. pertussis. We show that the presence of an alanine residue inserted at position 503 (A503) of Bp BteA accounts for its strongly attenuated cytotoxic potency. The deletion of A503 from Bp BteA greatly enhanced the cytotoxic activity of B. pertussis B1917 on mammalian HeLa cells and expression of Bp BteAΔA503 was highly toxic to Saccharomyces cerevisiae cells. Vice versa, insertion of A503 into B. bronchiseptica BteA (Bb BteA) strongly decreased its cytotoxicity to yeast and HeLa cells. Moreover, the production of Bp BteAΔA503 increased virulence of B. pertussis B1917 in the mouse model of intranasal infection (reduced LD50) but yielded less inflammatory pathology in infected mouse lungs at sublethal infectious doses. This suggests that A503 insertion in the T3SS effector Bp BteA may represent an evolutionary adaptation that fine-tunes B. pertussis virulence and host immune response.

Zobrazit více v PubMed

Burns DL, Meade BD, Messionnier NE. Pertussis resurgence: perspectives from the Working Group Meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge. J Infect Dis. 2014;209 Suppl 1:S32–5. 10.1093/infdis/jit491 . PubMed DOI

Sealey KL, Belcher T, Preston A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infect Genet Evol. 2016;40:136–43. 10.1016/j.meegid.2016.02.032 . PubMed DOI

Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18(2):326–82. 10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis. 2008;47(3):328–38. 10.1086/589753 . PubMed DOI

Cullinane LC, Alley MR, Marshall RB, Manktelow BW. Bordetella parapertussis from lambs. N Z Vet J. 1987;35(10):175 10.1080/00480169.1987.35433 . PubMed DOI

Heininger U, Stehr K, Schmitt-Grohe S, Lorenz C, Rost R, Christenson PD, et al. Clinical characteristics of illness caused by Bordetella parapertussis compared with illness caused by Bordetella pertussis. Pediatr Infect Dis J. 1994;13(4):306–9. 10.1097/00006454-199404000-00011 . PubMed DOI

Karalius VP, Rucinski SL, Mandrekar JN, Patel R. Bordetella parapertussis outbreak in Southeastern Minnesota and the United States, 2014. Medicine (Baltimore). 2017;96(20):e6730 10.1097/MD.0000000000006730 PubMed DOI PMC

Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. Plos Pathog. 2005;1(4):e45 10.1371/journal.ppat.0010045 PubMed DOI PMC

Goodnow RA. Biology of Bordetella bronchiseptica. Microbiol Rev. 1980;44(4):722–38. PubMed PMC

Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35(1):32–40. 10.1038/ng1227 . PubMed DOI

Buboltz AM, Nicholson TL, Weyrich LS, Harvill ET. Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica. Infect Immun. 2009;77(9):3969–77. 10.1128/IAI.01362-08 PubMed DOI PMC

Ahuja U, Liu M, Tomida S, Park J, Souda P, Whitelegge J, et al. Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol. 2012;12:167 10.1186/1471-2180-12-167 PubMed DOI PMC

Ahuja U, Shokeen B, Cheng N, Cho Y, Blum C, Coppola G, et al. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-sigma factor. Proc Natl Acad Sci U S A. 2016;113(9):2341–8. 10.1073/pnas.1600320113 PubMed DOI PMC

Galan JE, Waksman G. Protein-Injection Machines in Bacteria. Cell. 2018;172(6):1306–18. 10.1016/j.cell.2018.01.034 PubMed DOI PMC

Nicholson TL, Brockmeier SL, Loving CL, Register KB, Kehrli ME Jr., Shore SM. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun. 2014;82(3):1092–103. 10.1128/IAI.01115-13 PubMed DOI PMC

Yuk MH, Harvill ET, Cotter PA, Miller JF. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol. 2000;35(5):991–1004. 10.1046/j.1365-2958.2000.01785.x . PubMed DOI

Yuk MH, Harvill ET, Miller JF. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol. 1998;28(5):945–59. 10.1046/j.1365-2958.1998.00850.x . PubMed DOI

Skinner JA, Pilione MR, Shen H, Harvill ET, Yuk MH. Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J Immunol. 2005;175(7):4647–52. 10.4049/jimmunol.175.7.4647 . PubMed DOI

Pilione MR, Harvill ET. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect Immun. 2006;74(2):1043–9. 10.1128/IAI.74.2.1043-1049.2006 PubMed DOI PMC

Stockbauer KE, Foreman-Wykert AK, Miller JF. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 2003;5(2):123–32. 10.1046/j.1462-5822.2003.00260.x . PubMed DOI

Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol. 2005;58(1):267–79. 10.1111/j.1365-2958.2005.04823.x . PubMed DOI

French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol. 2009;11(12):1735–49. 10.1111/j.1462-5822.2009.01361.x PubMed DOI PMC

Gaillard ME, Bottero D, Castuma CE, Basile LA, Hozbor D. Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect Immun. 2011;79(9):3677–82. 10.1128/IAI.00136-11 PubMed DOI PMC

Fennelly NK, Sisti F, Higgins SC, Ross PJ, van der Heide H, Mooi FR, et al. Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun. 2008;76(3):1257–66. 10.1128/IAI.00836-07 PubMed DOI PMC

Hegerle N, Rayat L, Dore G, Zidane N, Bedouelle H, Guiso N. In-vitro and in-vivo analysis of the production of the Bordetella type three secretion system effector A in Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Microbes Infect. 2013;15(5):399–408. 10.1016/j.micinf.2013.02.006 . PubMed DOI

Shrivastava R, Miller JF. Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol. 2009;12(1):88–93. 10.1016/j.mib.2009.01.001 PubMed DOI PMC

Skopova K, Tomalova B, Kanchev I, Rossmann P, Svedova M, Adkins I, et al. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infect Immun. 2017;85(6). 10.1128/IAI.00937-16 PubMed DOI PMC

Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878 10.1038/s41598-017-17204-5 PubMed DOI PMC

Taylor-Mulneix DL, Bendor L, Linz B, Rivera I, Ryman VE, Dewan KK, et al. Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 2017;15(4):e2000420 10.1371/journal.pbio.2000420 PubMed DOI PMC

Hamidou Soumana I, Linz B, Harvill ET. Environmental Origin of the Genus Bordetella. Front Microbiol. 2017;8:28 10.3389/fmicb.2017.00028 PubMed DOI PMC

Linz B, Ivanov YV, Preston A, Brinkac L, Parkhill J, Kim M, et al. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics. 2016;17(1):767 10.1186/s12864-016-3112-5 PubMed DOI PMC

Park J, Zhang Y, Chen C, Dudley EG, Harvill ET. Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology. 2015;161(12):2328–40. 10.1099/mic.0.000197 PubMed DOI PMC

Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC, Ahuja U, et al. Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics. 2012;13:545 10.1186/1471-2164-13-545 PubMed DOI PMC

Ryan LK, Wu J, Schwartz K, Yim S, Diamond G. beta-Defensins Coordinate In Vivo to Inhibit Bacterial Infections of the Trachea. Vaccines (Basel). 2018;6(3). 10.3390/vaccines6030057 PubMed DOI PMC

Legarda D, Klein-Patel ME, Yim S, Yuk MH, Diamond G. Suppression of NF-kappaB-mediated beta-defensin gene expression in the mammalian airway by the Bordetella type III secretion system. Cell Microbiol. 2005;7(4):489–97. 10.1111/j.1462-5822.2004.00473.x PubMed DOI PMC

Stainer DW, Scholte MJ. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol. 1970;63(2):211–20. 10.1099/00221287-63-2-211 . PubMed DOI

Hanawa T, Kamachi K, Yonezawa H, Fukutomi T, Kawakami H, Kamiya S. Glutamate Limitation, BvgAS Activation, and (p)ppGpp Regulate the Expression of the Bordetella pertussis Type 3 Secretion System. J Bacteriol. 2016;198(2):343–51. 10.1128/JB.00596-15 PubMed DOI PMC

Kurushima J, Kuwae A, Abe A. Iron starvation regulates the type III secretion system in Bordetella bronchiseptica. Microbiol Immunol. 2012;56(6):356–62. 10.1111/j.1348-0421.2012.00442.x . PubMed DOI

Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5. 10.1038/nmeth.1318 . PubMed DOI

Chen DC, Yang BC, Kuo TT. One-step transformation of yeast in stationary phase. Curr Genet. 1992;21(1):83–4. 10.1007/BF00318659 . PubMed DOI

Volland C, Urban-Grimal D, Geraud G, Haguenauer-Tsapis R. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem. 1994;269(13):9833–41. . PubMed

Tyson AL, Hilton ST, Andreae LC. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy. Int J Pharm. 2015;494(2):651–6. 10.1016/j.ijpharm.2015.03.042 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of Bordetella pertussis

. 2025 Dec ; 14 (1) : 2451718. [epub] 20250127

The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis

. 2024 Dec 11 ; 15 (12) : e0192524. [epub] 20241121

T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis

. 2023 Dec ; 12 (2) : 2272638. [epub] 20231101

BopN is a Gatekeeper of the Bordetella Type III Secretion System

. 2023 Jun 15 ; 11 (3) : e0411222. [epub] 20230410

The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model

. 2022 Apr ; 18 (4) : e1010402. [epub] 20220408

Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins

. 2021 Oct 06 ; 11 (1) : 19814. [epub] 20211006

Lipid binding by the N-terminal motif mediates plasma membrane localization of Bordetella effector protein BteA

. 2021 Jan-Jun ; 296 () : 100607. [epub] 20210328

Omics Analysis of Blood-Responsive Regulon in Bordetella pertussis Identifies a Novel Essential T3SS Substrate

. 2021 Jan 13 ; 22 (2) : . [epub] 20210113

Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation

. 2020 ; 11 () : 2181. [epub] 20200911

Bordetella Type III Secretion Injectosome and Effector Proteins

. 2020 ; 10 () : 466. [epub] 20200904

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...