The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35395059
PubMed Central
PMC9020735
DOI
10.1371/journal.ppat.1010402
PII: PPATHOGENS-D-21-01903
Knihovny.cz E-zdroje
- MeSH
- adenylátcyklasový toxin MeSH
- bakteriální adheziny * metabolismus MeSH
- Bordetella pertussis * genetika MeSH
- faktory virulence rodu Bordetella genetika MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nosní dutina mikrobiologie MeSH
- pertuse * přenos MeSH
- pertusová vakcína MeSH
- protein MyD88 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- bakteriální adheziny * MeSH
- faktory virulence rodu Bordetella MeSH
- pertusová vakcína MeSH
- protein MyD88 MeSH
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.
Zobrazit více v PubMed
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clinical microbiology reviews. 2005;18(2):326–82. doi: 10.1128/CMR.18.2.326-382.2005 ; PubMed Central PMCID: PMC1082800. PubMed DOI PMC
Melvin JA, Scheller EV, Miller JF, Cotter PA. Bordetella pertussis pathogenesis: current and future challenges. Nature reviews Microbiology. 2014;12(4):274–88. doi: 10.1038/nrmicro3235 ; PubMed Central PMCID: PMC4205565. PubMed DOI PMC
Eby JC, Gray MC, Warfel JM, Paddock CD, Jones TF, Day SR, et al.. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infection and immunity. 2013;81(5):1390–8. doi: 10.1128/IAI.00110-13 ; PubMed Central PMCID: PMC3648026. PubMed DOI PMC
Czumbel I, Quinten C, Lopalco P, Semenza JC, group Eepw. Management and control of communicable diseases in schools and other child care settings: systematic review on the incubation period and period of infectiousness. BMC infectious diseases. 2018;18(1):199. doi: 10.1186/s12879-018-3095-8 ; PubMed Central PMCID: PMC5930806. PubMed DOI PMC
Cherry JD. The present and future control of pertussis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2010;51(6):663–7. doi: 10.1086/655826 . PubMed DOI
Mertsola J, Van Der Meeren O, He Q, Linko-Parvinen A, Ramakrishnan G, Mannermaa L, et al.. Decennial administration of a reduced antigen content diphtheria and tetanus toxoids and acellular pertussis vaccine in young adults. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2010;51(6):656–62. doi: 10.1086/655825 . PubMed DOI
Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. An update of the global burden of pertussis in children younger than 5 years: a modelling study. The Lancet Infectious diseases. 2017;17(9):974–80. doi: 10.1016/S1473-3099(17)30390-0 . PubMed DOI
Althouse BM, Scarpino SV. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC medicine. 2015;13:146. doi: 10.1186/s12916-015-0382-8 ; PubMed Central PMCID: PMC4482312. PubMed DOI PMC
Domenech de Celles M, Magpantay FM, King AA, Rohani P. The pertussis enigma: reconciling epidemiology, immunology and evolution. Proceedings Biological sciences. 2016;283(1822). doi: 10.1098/rspb.2015.2309 ; PubMed Central PMCID: PMC4721090. PubMed DOI PMC
Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(2):787–92. doi: 10.1073/pnas.1314688110 ; PubMed Central PMCID: PMC3896208. PubMed DOI PMC
Allen AC, Wilk MM, Misiak A, Borkner L, Murphy D, Mills KHG. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal immunology. 2018;11(6):1763–76. doi: 10.1038/s41385-018-0080-x . PubMed DOI
Borkner L, Curham LM, Wilk MM, Moran B, Mills KHG. Correction: IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F(+) neutrophils. Mucosal immunology. 2021. doi: 10.1038/s41385-021-00417-3 . PubMed DOI PMC
Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie AS, Coutte L, et al.. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ vaccines. 2021;6(1):6. doi: 10.1038/s41541-020-00270-8 ; PubMed Central PMCID: PMC7794405. PubMed DOI PMC
Holubova J, Stanek O, Brazdilova L, Masin J, Bumba L, Gorringe AR, et al.. Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice. Vaccines. 2020;8(4). doi: 10.3390/vaccines8040695 ; PubMed Central PMCID: PMC7711433. PubMed DOI PMC
Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerging microbes & infections. 2019;8(1):169–85. doi: 10.3389/fcimb.2019.00125 ; PubMed Central PMCID: PMC6455184. PubMed DOI PMC
Gill CJ, Gunning CE, MacLeod WB, Mwananyanda L, Thea DM, Pieciak RC, et al.. Asymptomatic Bordetella pertussis infections in a longitudinal cohort of young African infants and their mothers. eLife. 2021;10. doi: 10.7554/eLife.65663 ; PubMed Central PMCID: PMC8184211. PubMed DOI PMC
Locht C, Coutte L, Mielcarek N. The ins and outs of pertussis toxin. The FEBS journal. 2011;278(23):4668–82. doi: 10.1111/j.1742-4658.2011.08237.x . PubMed DOI
Carbonetti NH. Pertussis leukocytosis: mechanisms, clinical relevance and treatment. Pathogens and disease. 2016;74(7). doi: 10.1093/femspd/ftw087 ; PubMed Central PMCID: PMC5761200. PubMed DOI PMC
Carbonetti NH, Artamonova GV, Andreasen C, Dudley E, Mays RM, Worthington ZE. Suppression of serum antibody responses by pertussis toxin after respiratory tract colonization by Bordetella pertussis and identification of an immunodominant lipoprotein. Infection and immunity. 2004;72(6):3350–8. doi: 10.1128/IAI.72.6.3350-3358.2004 ; PubMed Central PMCID: PMC415701. PubMed DOI PMC
Mielcarek N, Riveau G, Remoue F, Antoine R, Capron A, Locht C. Homologous and heterologous protection after single intranasal administration of live attenuated recombinant Bordetella pertussis. Nature biotechnology. 1998;16(5):454–7. doi: 10.1038/nbt0598-454 . PubMed DOI
Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, et al.. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9(10). doi: 10.3390/toxins9100300 ; PubMed Central PMCID: PMC5666347. PubMed DOI PMC
Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, et al.. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). The Journal of experimental medicine. 2001;193(9):1035–44. doi: 10.1084/jem.193.9.1035 ; PubMed Central PMCID: PMC2193436. PubMed DOI PMC
Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766 ; PubMed Central PMCID: PMC4755762. PubMed DOI PMC
Ahmad JN, Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Frontiers in immunology. 2020;11:2181. doi: 10.3389/fimmu.2020.02181 ; PubMed Central PMCID: PMC7516048. PubMed DOI PMC
Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. Journal of immunology. 2017;198(3):1285–96. doi: 10.4049/jimmunol.1601309 . PubMed DOI
Confer DL, Eaton JW. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217(4563):948–50. doi: 10.1126/science.6287574 . PubMed DOI
Eby JC, Gray MC, Hewlett EL. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infection and immunity. 2014;82(12):5256–69. doi: 10.1128/IAI.02487-14 ; PubMed Central PMCID: PMC4249293. PubMed DOI PMC
Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, et al.. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. Journal of immunology. 2008;181(8):5587–97. doi: 10.4049/jimmunol.181.8.5587 . PubMed DOI
Ahmad JN, Holubova J, Benada O, Kofronova O, Stehlik L, Vasakova M, et al.. Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio. 2019;10(5). doi: 10.1128/mBio.01743-19 ; PubMed Central PMCID: PMC6759761. PubMed DOI PMC
Ahmad JN, Cerny O, Linhartova I, Masin J, Osicka R, Sebo P. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cellular microbiology. 2016;18(3):384–98. doi: 10.1111/cmi.12519 . PubMed DOI
Gueirard P, Druilhe A, Pretolani M, Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infection and immunity. 1998;66(4):1718–25. doi: 10.1128/IAI.66.4.1718-1725.1998 ; PubMed Central PMCID: PMC108109. PubMed DOI PMC
Adkins I, Kamanova J, Kocourkova A, Svedova M, Tomala J, Janova H, et al.. Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells. PloS one. 2014;9(8):e104064. doi: 10.1371/journal.pone.0104064 ; PubMed Central PMCID: PMC4118975. PubMed DOI PMC
Mills KH, Gerdts V. Mouse and pig models for studies of natural and vaccine-induced immunity to Bordetella pertussis. The Journal of infectious diseases. 2014;209 Suppl 1:S16–9. doi: 10.1093/infdis/jit488 . PubMed DOI
Warfel JM, Merkel TJ. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert review of vaccines. 2014;13(10):1241–52. doi: 10.1586/14760584.2014.946016 . PubMed DOI
Zimmerman LI, Papin JF, Warfel J, Wolf RF, Kosanke SD, Merkel TJ. Histopathology of Bordetella pertussis in the Baboon Model. Infection and immunity. 2018;86(11). doi: 10.1128/IAI.00511-18 ; PubMed Central PMCID: PMC6204705. PubMed DOI PMC
Scanlon KM, Snyder YG, Skerry C, Carbonetti NH. Fatal Pertussis in the Neonatal Mouse Model Is Associated with Pertussis Toxin-Mediated Pathology beyond the Airways. Infection and immunity. 2017;85(11). doi: 10.1128/IAI.00355-17 ; PubMed Central PMCID: PMC5649019. PubMed DOI PMC
Weyrich LS, Feaga HA, Park J, Muse SJ, Safi CY, Rolin OY, et al.. Resident microbiota affect Bordetella pertussis infectious dose and host specificity. The Journal of infectious diseases. 2014;209(6):913–21. doi: 10.1093/infdis/jit597 ; PubMed Central PMCID: PMC3935476. PubMed DOI PMC
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nature reviews Immunology. 2014;14(8):546–58. doi: 10.1038/nri3713 . PubMed DOI
Southam DS, Dolovich M, O’Byrne PM, Inman MD. Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. American journal of physiology Lung cellular and molecular physiology. 2002;282(4):L833–9. doi: 10.1152/ajplung.00173.2001 . PubMed DOI
Villarino Romero R, Bibova I, Cerny O, Vecerek B, Wald T, Benada O, et al.. The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infection and immunity. 2013;81(8):2761–7. doi: 10.1128/IAI.00353-13 ; PubMed Central PMCID: PMC3719584. PubMed DOI PMC
Bayram J, Malcova I, Sinkovec L, Holubova J, Streparola G, Jurnecka D, et al.. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS pathogens. 2020;16(8):e1008512. doi: 10.1371/journal.ppat.1008512 ; PubMed Central PMCID: PMC7446853. PubMed DOI PMC
Conover MS, Sloan GP, Love CF, Sukumar N, Deora R. The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Molecular microbiology. 2010;77(6):1439–55. doi: 10.1111/j.1365-2958.2010.07297.x ; PubMed Central PMCID: PMC2939936. PubMed DOI PMC
Shah NR, Hancock RE, Fernandez RC. Bordetella pertussis lipid A glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation. Antimicrobial agents and chemotherapy. 2014;58(8):4931–4. doi: 10.1128/AAC.02590-14 ; PubMed Central PMCID: PMC4136009. PubMed DOI PMC
Hovingh ES, van den Broek B, Kuipers B, Pinelli E, Rooijakkers SHM, Jongerius I. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface. PLoS pathogens. 2017;13(7):e1006531. doi: 10.1371/journal.ppat.1006531 ; PubMed Central PMCID: PMC5542704. PubMed DOI PMC
Coutte L, Huot L, Antoine R, Slupek S, Merkel TJ, Chen Q, et al.. The multifaceted RisA regulon of Bordetella pertussis. Scientific reports. 2016;6:32774. doi: 10.1038/srep32774 ; PubMed Central PMCID: PMC5020355. PubMed DOI PMC
Chen Q, Ng V, Warfel JM, Merkel TJ, Stibitz S. Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK. Journal of bacteriology. 2017;199(22). doi: 10.1128/JB.00475-17 ; PubMed Central PMCID: PMC5648863. PubMed DOI PMC
Flak TA, Goldman WE. Autotoxicity of nitric oxide in airway disease. American journal of respiratory and critical care medicine. 1996;154(4 Pt 2):S202–6. doi: 10.1164/ajrccm/154.4_Pt_2.S202 . PubMed DOI
Kessie DK, Lodes N, Oberwinkler H, Goldman WE, Walles T, Steinke M, et al.. Activity of Tracheal Cytotoxin of Bordetella pertussis in a Human Tracheobronchial 3D Tissue Model. Frontiers in cellular and infection microbiology. 2020;10:614994. doi: 10.3389/fcimb.2020.614994 ; PubMed Central PMCID: PMC7873972. PubMed DOI PMC
Paik D, Monahan A, Caffrey DR, Elling R, Goldman WE, Silverman N. SLC46 Family Transporters Facilitate Cytosolic Innate Immune Recognition of Monomeric Peptidoglycans. Journal of immunology. 2017;199(1):263–70. doi: 10.4049/jimmunol.1600409 ; PubMed Central PMCID: PMC5513181. PubMed DOI PMC
Mielcarek N, Debrie AS, Raze D, Quatannens J, Engle J, Goldman WE, et al.. Attenuated Bordetella pertussis: new live vaccines for intranasal immunisation. Vaccine. 2006;24 Suppl 2:S2-54–5. doi: 10.1016/j.vaccine.2005.01.120 . PubMed DOI
Inatsuka CS, Xu Q, Vujkovic-Cvijin I, Wong S, Stibitz S, Miller JF, et al.. Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infection and immunity. 2010;78(7):2901–9. doi: 10.1128/IAI.00188-10 ; PubMed Central PMCID: PMC2897405. PubMed DOI PMC
Ma L, Dewan KK, Taylor-Mulneix DL, Wagner SM, Linz B, Rivera I, et al.. Pertactin contributes to shedding and transmission of Bordetella bronchiseptica. PLoS pathogens. 2021;17(8):e1009735. doi: 10.1371/journal.ppat.1009735 ; PubMed Central PMCID: PMC8336816. PubMed DOI PMC
Banus HA, Vandebriel RJ, de Ruiter H, Dormans JA, Nagelkerke NJ, Mooi FR, et al.. Host genetics of Bordetella pertussis infection in mice: significance of Toll-like receptor 4 in genetic susceptibility and pathobiology. Infection and immunity. 2006;74(5):2596–605. doi: 10.1128/IAI.74.5.2596-2605.2006 ; PubMed Central PMCID: PMC1459714. PubMed DOI PMC
Debrie AS, Mielcarek N, Lecher S, Roux X, Sirard JC, Locht C. Early Protection against Pertussis Induced by Live Attenuated Bordetella pertussis BPZE1 Depends on TLR4. Journal of immunology. 2019;203(12):3293–300. doi: 10.4049/jimmunol.1901102 . PubMed DOI
Higgins SC, Lavelle EC, McCann C, Keogh B, McNeela E, Byrne P, et al.. Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. Journal of immunology. 2003;171(6):3119–27. doi: 10.4049/jimmunol.171.6.3119 . PubMed DOI
Hovingh ES, van Gent M, Hamstra HJ, Demkes M, Mooi FR, Pinelli E. Emerging Bordetella pertussis Strains Induce Enhanced Signaling of Human Pattern Recognition Receptors TLR2, NOD2 and Secretion of IL-10 by Dendritic Cells. PloS one. 2017;12(1):e0170027. doi: 10.1371/journal.pone.0170027 ; PubMed Central PMCID: PMC5226795. PubMed DOI PMC
Moreno G, Errea A, Van Maele L, Roberts R, Leger H, Sirard JC, et al.. Toll-like receptor 4 orchestrates neutrophil recruitment into airways during the first hours of Bordetella pertussis infection. Microbes and infection. 2013;15(10–11):708–18. doi: 10.1016/j.micinf.2013.06.010 . PubMed DOI
Zurita E, Moreno G, Errea A, Ormazabal M, Rumbo M, Hozbor D. The stimulated innate resistance event in Bordetella pertussis infection is dependent on reactive oxygen species production. Infection and immunity. 2013;81(7):2371–8. doi: 10.1128/IAI.00336-13 ; PubMed Central PMCID: PMC3697608. PubMed DOI PMC
Kieser KJ, Kagan JC. Multi-receptor detection of individual bacterial products by the innate immune system. Nature reviews Immunology. 2017;17(6):376–90. doi: 10.1038/nri.2017.25 ; PubMed Central PMCID: PMC6698371. PubMed DOI PMC
Connelly CE, Sun Y, Carbonetti NH. Pertussis toxin exacerbates and prolongs airway inflammatory responses during Bordetella pertussis infection. Infection and immunity. 2012;80(12):4317–32. doi: 10.1128/IAI.00808-12 ; PubMed Central PMCID: PMC3497438. PubMed DOI PMC
Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE, et al.. Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. Journal of immunology. 2010;185(3):1711–9. doi: 10.4049/jimmunol.1000105 . PubMed DOI
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, et al.. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infection and immunity. 2018;86(3). doi: 10.1128/IAI.00445-17 ; PubMed Central PMCID: PMC5820963. PubMed DOI PMC
Perkins DJ, Gray MC, Hewlett EL, Vogel SN. Bordetella pertussis adenylate cyclase toxin (ACT) induces cyclooxygenase-2 (COX-2) in murine macrophages and is facilitated by ACT interaction with CD11b/CD18 (Mac-1). Molecular microbiology. 2007;66(4):1003–15. doi: 10.1111/j.1365-2958.2007.05972.x . PubMed DOI
Skopova K, Tomalova B, Kanchev I, Rossmann P, Svedova M, Adkins I, et al.. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infection and immunity. 2017;85(6). doi: 10.1128/IAI.00937-16 ; PubMed Central PMCID: PMC5442630. PubMed DOI PMC
Svedova M, Masin J, Fiser R, Cerny O, Tomala J, Freudenberg M, et al.. Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells. Immunology and cell biology. 2016;94(4):322–33. doi: 10.1038/icb.2015.87 . PubMed DOI
Gervassi AL, Horton H. Is Infant Immunity Actively Suppressed or Immature? Virology: research and treatment. 2014;2014(5):1–9. doi: 10.4137/VRT.S12248 ; PubMed Central PMCID: PMC4241502. PubMed DOI PMC
Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proceedings Biological sciences. 2015;282(1821):20143085. doi: 10.1098/rspb.2014.3085 ; PubMed Central PMCID: PMC4707740. PubMed DOI PMC
Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease. Advanced drug delivery reviews. 1998;29(1–2):3–12. doi: 10.1016/s0169-409x(97)00058-6 . PubMed DOI
Parent RA. Comparative Biology of the Normal Lung. Parent RA, editor: Academic Press; 2015.
Ruigrok MJ, de Lange EC. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans. The AAPS journal. 2015;17(3):493–505. doi: 10.1208/s12248-015-9724-x ; PubMed Central PMCID: PMC4406961. PubMed DOI PMC
Elahi S, Brownlie R, Korzeniowski J, Buchanan R, O’Connor B, Peppler MS, et al.. Infection of newborn piglets with Bordetella pertussis: a new model for pertussis. Infection and immunity. 2005;73(6):3636–45. doi: 10.1128/IAI.73.6.3636-3645.2005 ; PubMed Central PMCID: PMC1111856. PubMed DOI PMC
Elahi S, Holmstrom J, Gerdts V. The benefits of using diverse animal models for studying pertussis. Trends in microbiology. 2007;15(10):462–8. doi: 10.1016/j.tim.2007.09.003 . PubMed DOI
Pinto MV, Merkel TJ. Pertussis disease and transmission and host responses: insights from the baboon model of pertussis. The Journal of infection. 2017;74 Suppl 1:S114–S9. doi: 10.1016/S0163-4453(17)30201-3 . PubMed DOI
Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. Nonhuman primate model of pertussis. Infection and immunity. 2012;80(4):1530–6. doi: 10.1128/IAI.06310-11 ; PubMed Central PMCID: PMC3318410. PubMed DOI PMC
Hall E, Parton R, Wardlaw AC. Cough production, leucocytosis and serology of rats infected intrabronchially with Bordetella pertussis. Journal of medical microbiology. 1994;40(3):205–13. doi: 10.1099/00222615-40-3-205 . PubMed DOI
Hall E, Parton R, Wardlaw AC. Time-course of infection and responses in a coughing rat model of pertussis. Journal of medical microbiology. 1999;48(1):95–8. doi: 10.1099/00222615-48-1-95 . PubMed DOI
Hall JM, Kang J, Kenney SM, Wong TY, Bitzer GJ, Kelly CO, et al.. Re-investigating the coughing rat model of pertussis to understand Bordetella pertussis pathogenesis. Infection and immunity. 2021:IAI0030421. doi: 10.1128/IAI.00304-21 . PubMed DOI PMC
Rolin O, Smallridge W, Henry M, Goodfield L, Place D, Harvill ET. Toll-like receptor 4 limits transmission of Bordetella bronchiseptica. PloS one. 2014;9(1):e85229. doi: 10.1371/journal.pone.0085229 ; PubMed Central PMCID: PMC3907416. PubMed DOI PMC
Soumana IH, Dewan KK, Linz B, Rivera I, Ma L, Howard LK, et al.. Modeling the catarrhal stage of Bordetella pertussis upper respiratory tract infections in mice. Dis Model Mech. 2022; 15(4):049266. doi: 10.1242/dmm.049266 . PubMed DOI PMC
Chen L, Lai K, Lomask JM, Jiang B, Zhong N. Detection of mouse cough based on sound monitoring and respiratory airflow waveforms. PloS one. 2013;8(3):e59263. doi: 10.1371/journal.pone.0059263 ; PubMed Central PMCID: PMC3605448. PubMed DOI PMC
Iwata T, Ito I, Niimi A, Ikegami K, Marumo S, Tanabe N, et al.. Mechanical Stimulation by Postnasal Drip Evokes Cough. PloS one. 2015;10(11):e0141823. doi: 10.1371/journal.pone.0141823 ; PubMed Central PMCID: PMC4651329. PubMed DOI PMC
Dickinson JD, Sweeter JM, Staab EB, Nelson AJ, Bailey KL, Warren KJ, et al.. MyD88 controls airway epithelial Muc5ac expression during TLR activation conditions from agricultural organic dust exposure. American journal of physiology Lung cellular and molecular physiology. 2019;316(2):L334–L47. doi: 10.1152/ajplung.00206.2018 ; PubMed Central PMCID: PMC6397350. PubMed DOI PMC
Andreasen C, Carbonetti NH. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. Infection and immunity. 2008;76(11):5139–48. doi: 10.1128/IAI.00895-08 ; PubMed Central PMCID: PMC2573337. PubMed DOI PMC
Carbonetti NH. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future microbiology. 2010;5(3):455–69. doi: 10.2217/fmb.09.133 ; PubMed Central PMCID: PMC2851156. PubMed DOI PMC
Soane MC, Jackson A, Maskell D, Allen A, Keig P, Dewar A, et al.. Interaction of Bordetella pertussis with human respiratory mucosa in vitro. Respiratory medicine. 2000;94(8):791–9. doi: 10.1053/rmed.2000.0823 . PubMed DOI
Vandebriel RJ, Hellwig SM, Vermeulen JP, Hoekman JH, Dormans JA, Roholl PJ, et al.. Association of Bordetella pertussis with host immune cells in the mouse lung. Microbial pathogenesis. 2003;35(1):19–29. doi: 10.1016/s0882-4010(03)00087-1 . PubMed DOI
Melvin JA, Scheller EV, Noel CR, Cotter PA. New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in Bordetella Virulence. mBio. 2015;6(4). doi: 10.1128/mBio.01189-15 ; PubMed Central PMCID: PMC4542190. PubMed DOI PMC
Scheller EV, Melvin JA, Sheets AJ, Cotter PA. Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. mBio. 2015;6(3):e00500–15. doi: 10.1128/mBio.00500-15 ; PubMed Central PMCID: PMC4447244. PubMed DOI PMC
Bouchez V, Hegerle N, Strati F, Njamkepo E, Guiso N. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates. Vaccines. 2015;3(3):751–70. doi: 10.3390/vaccines3030751 ; PubMed Central PMCID: PMC4586476. PubMed DOI PMC
Hegerle N, Paris AS, Brun D, Dore G, Njamkepo E, Guillot S, et al.. Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2012;18(9):E340–6. doi: 10.1111/j.1469-0691.2012.03925.x . PubMed DOI
Weigand MR, Pawloski LC, Peng Y, Ju H, Burroughs M, Cassiday PK, et al.. Screening and Genomic Characterization of Filamentous Hemagglutinin-Deficient Bordetella pertussis. Infection and immunity. 2018;86(4). doi: 10.1128/IAI.00869-17 ; PubMed Central PMCID: PMC5865017. PubMed DOI PMC
Stainer DW, Scholte MJ. A simple chemically defined medium for the production of phase I Bordetella pertussis. Journal of general microbiology. 1970;63(2):211–20. doi: 10.1099/00221287-63-2-211 . PubMed DOI
Lee SJ, Gray MC, Guo L, Sebo P, Hewlett EL. Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infection and immunity. 1999;67(5):2090–5. doi: 10.1128/IAI.67.5.2090-2095.1999 ; PubMed Central PMCID: PMC115942. PubMed DOI PMC
van der Ark A, van Straaten-van de Kappelle I, Akkermans A, Hendriksen C, van de Donk H. Development of pertussis serological potency test. Serological assessment of antibody response induced by whole cell vaccine as an alternative to mouse protection in an intracerebral challenge model. Biologicals: journal of the International Association of Biological Standardization. 1994;22(3):233–42. doi: 10.1006/biol.1994.1034 . PubMed DOI
Caro V, Hot D, Guigon G, Hubans C, Arrive M, Soubigou G, et al.. Temporal analysis of French Bordetella pertussis isolates by comparative whole-genome hybridization. Microbes and infection. 2006;8(8):2228–35. doi: 10.1016/j.micinf.2006.04.014 . PubMed DOI
Osicka R, Osickova A, Basar T, Guermonprez P, Rojas M, Leclerc C, et al.. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infection and immunity. 2000;68(1):247–56. doi: 10.1128/IAI.68.1.247-256.2000 ; PubMed Central PMCID: PMC97128. PubMed DOI PMC
Buasri W, Impoolsup A, Boonchird C, Luengchaichawange A, Prompiboon P, Petre J, et al.. Construction of Bordetella pertussis strains with enhanced production of genetically-inactivated Pertussis Toxin and Pertactin by unmarked allelic exchange. BMC microbiology. 2012;12:61. doi: 10.1186/1471-2180-12-61 ; PubMed Central PMCID: PMC3349578. PubMed DOI PMC
Modeling the catarrhal stage of Bordetella pertussis upper respiratory tract infections in mice