Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells

. 2014 ; 9 (8) : e104064. [epub] 20140801

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25084094

Adenylate cyclase toxin (CyaA) is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC) enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR)-activated murine and human dendritic cells (DCs). cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4(+) and CD8(+) T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4(+)CD25(+)Foxp3(+) T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8(+) T cell proliferation and limited the induction of IFN-γ producing CD8(+) T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.

Zobrazit více v PubMed

de Gouw D, Diavatopoulos DA, Bootsma HJ, Hermans PW, Mooi FR (2011) Pertussis: a matter of immune modulation. FEMS Microbiol Rev 35: 441–474. PubMed

Plotkin SA (2014) The pertussis problem. Clin Infect Dis 58: 830–833. PubMed

Higgs R, Higgins SC, Ross PJ, Mills KH (2012) Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol 5: 485–500. PubMed

Vojtova J, Kamanova J, Sebo P (2006) Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9: 69–75. PubMed

Goodwin MS, Weiss AA (1990) Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun 58: 3445–3447. PubMed PMC

Fiser R, Masin J, Basler M, Krusek J, Spulakova V, et al. (2007) Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 282: 2808–2820. PubMed

Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, et al. (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193: 1035–1044. PubMed PMC

Ladant D, Ullmann A (1999) Bordatella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7: 172–176. PubMed

Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, et al. (2010) Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 185: 1711–1719. PubMed

Confer DL, Eaton JW (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217: 948–950. PubMed

Pearson RD, Symes P, Conboy M, Weiss AA, Hewlett EL (1987) Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J Immunol 139: 2749–2754. PubMed

Khelef N, Zychlinsky A, Guiso N (1993) Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect Immun 61: 4064–4071. PubMed PMC

Basler M, Masin J, Osicka R, Sebo P (2006) Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect Immun 74: 2207–2214. PubMed PMC

Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, et al. (2008) Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 181: 5587–5597. PubMed

Bagley KC, Abdelwahab SF, Tuskan RG, Fouts TR, Lewis GK (2002) Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J Leukoc Biol 72: 962–969. PubMed

Boyd AP, Ross PJ, Conroy H, Mahon N, Lavelle EC, et al. (2005) Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J Immunol 175: 730–738. PubMed

Hickey FB, Brereton CF, Mills KH (2008) Adenylate cycalse toxin of Bordetella pertussis inhibits TLR-induced IRF-1 and IRF-8 activation and IL-12 production and enhances IL-10 through MAPK activation in dendritic cells. J Leukoc Biol 84: 234–243. PubMed

Ross PJ, Lavelle EC, Mills KH, Boyd AP (2004) Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T cells. Infect Immun 72: 1568–1579. PubMed PMC

Spensieri F, Fedele G, Fazio C, Nasso M, Stefanelli P, et al. (2006) Bordetella pertussis inhibition of interleukin-12 (IL-12) p70 in human monocyte-derived dendritic cells blocks IL-12 p35 through adenylate cyclase toxin-dependent cyclic AMP induction. Infect Immun 74: 2831–2838. PubMed PMC

Fedele G, Spensieri F, Palazzo R, Nasso M, Cheung GY, et al. (2010) Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways. PLoS One 5: e8734. PubMed PMC

Higgins SC, Jarnicki AG, Lavelle EC, Mills KH (2006) TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol 177: 7980–7989. PubMed

Leef M, Elkins KL, Barbic J, Shahin RD (2000) Protective immunity to Bordetella pertussis requires both B cells and CD4(+) T cells for key functions other than specific antibody production. J Exp Med 191: 1841–1852. PubMed PMC

Mills KH, Barnard A, Watkins J, Redhead K (1993) Cell-mediated immunity to Bordetella pertussis: role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect Immun 61: 399–410. PubMed PMC

Dirix V, Verscheure V, Vermeulen F, De Schutter I, Goetghebuer T, et al. (2012) Both CD4(+) and CD8(+) lymphocytes participate in the IFN-gamma response to filamentous hemagglutinin from Bordetella pertussis in infants, children, and adults. Clin Dev Immunol 2012: 795958. PubMed PMC

Rieber N, Graf A, Hartl D, Urschel S, Belohradsky BH, et al. (2011) Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response. PLoS One 6: e17271. PubMed PMC

Eby JC, Gray MC, Warfel JM, Paddock CD, Jones TF, et al. (2013) Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect Immun 81: 1390–1398. PubMed PMC

Lutz MB, Rovere P, Kleijmeer MJ, Rescigno M, Assmann CU, et al. (1997) Intracellular routes and selective retention of antigens in mildly acidic cathepsin D/lysosome-associated membrane protein-1/MHC class II-positive vesicles in immature dendritic cells. J Immunol 159: 3707–3716. PubMed

Spisek R, Brazova J, Rozkova D, Zapletalova K, Sediva A, et al. (2004) Maturation of dendritic cells by bacterial immunomodulators. Vaccine 22: 2761–2768. PubMed

Tartz S, Kamanova J, Simsova M, Sebo P, Bolte S, et al. (2006) Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria. Infect Immun 74: 2277–2285. PubMed PMC

Masin J, Basler M, Knapp O, El-Azami-El-Idrissi M, Maier E, et al. (2005) Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 44: 12759–12766. PubMed

Atienza JM, Zhu J, Wang X, Xu X, Abassi Y (2005) Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen 10: 795–805. PubMed

Adkins I, Koberle M, Grobner S, Autenrieth SE, Bohn E, et al. (2008) Y. enterocolitica inhibits antigen degradation in dendritic cells. Microbes Infect 10: 798–806. PubMed

Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C (2007) Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316: 612–616. PubMed

Tanaka Y, Nakano H, Ishikawa F, Yoshida M, Gyotoku Y, et al. (1999) Cholera toxin increases intracellular pH in B lymphoma cells and decreases their antigen-presenting ability. Eur J Immunol 29: 1561–1570. PubMed

Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061. PubMed

Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, et al. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811. PubMed

Dunne PJ, Moran B, Cummins RC, Mills KH (2009) CD11c+CD8alpha+ dendritic cells promote protective immunity to respiratory infection with Bordetella pertussis. J Immunol 183: 400–410. PubMed

Ricart BG, John B, Lee D, Hunter CA, Hammer DA (2011) Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4. J Immunol 186: 53–61. PubMed

Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385: 537–540. PubMed

Fedele G, Bianco M, Debrie AS, Locht C, Ausiello CM (2011) Attenuated Bordetella pertussis vaccine candidate BPZE1 promotes human dendritic cell CCL21-induced migration and drives a Th1/Th17 response. J Immunol 186: 5388–5396. PubMed

Boschwitz JS, Batanghari JW, Kedem H, Relman DA (1997) Bordetella pertussis infection of human monocytes inhibits antigen-dependent CD4 T cell proliferation. J Infect Dis 176: 678–686. PubMed

McGuirk P, Mahon BP, Griffin F, Mills KH (1998) Compartmentalization of T cell responses following respiratory infection with Bordetella pertussis: hyporesponsiveness of lung T cells is associated with modulated expression of the co-stimulatory molecule CD28. Eur J Immunol 28: 153–163. PubMed

Challier J, Bruniquel D, Sewell AK, Laugel B (2013) Adenosine and cAMP signalling skew human dendritic cell differentiation towards a tolerogenic phenotype with defective CD8(+) T-cell priming capacity. Immunology 138: 402–410. PubMed PMC

Rossi Paccani S, Benagiano M, Capitani N, Zornetta I, Ladant D, et al. (2009) The adenylate cyclase toxins of Bacillus anthracis and Bordetella pertussis promote Th2 cell development by shaping T cell antigen receptor signaling. PLoS Pathog 5: e1000325. PubMed PMC

Matousek MP, Nedrud JG, Harding CV (1996) Distinct effects of recombinant cholera toxin B subunit and holotoxin on different stages of class II MHC antigen processing and presentation by macrophages. J Immunol 156: 4137–4145. PubMed

Matousek MP, Nedrud JG, Cieplak W Jr, Harding CV (1998) Inhibition of class II major histocompatibility complex antigen processing by Escherichia coli heat-labile enterotoxin requires an enzymatically active A subunit. Infect Immun 66: 3480–3484. PubMed PMC

Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, et al. (1999) Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162: 3256–3262. PubMed

Schmidt CS, Mescher MF (2002) Peptide antigen priming of naive, but not memory, CD8 T cells requires a third signal that can be provided by IL-12. J Immunol 168: 5521–5529. PubMed

Day PM, Yewdell JW, Porgador A, Germain RN, Bennink JR (1997) Direct delivery of exogenous MHC class I molecule-binding oligopeptides to the endoplasmic reticulum of viable cells. Proc Natl Acad Sci U S A 94: 8064–8069. PubMed PMC

Granados DP, Tanguay PL, Hardy MP, Caron E, de Verteuil D, et al. (2009) ER stress affects processing of MHC class I-associated peptides. BMC Immunol 10: 10. PubMed PMC

Bartoszewski R, Brewer JW, Rab A, Crossman DK, Bartoszewska S, et al. (2011) The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem 286: 41862–41870. PubMed PMC

McGuirk P, McCann C, Mills KH (2002) Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 195: 221–231. PubMed PMC

McGuirk P, Mills KH (2000) Direct anti-inflammatory effect of a bacterial virulence factor: IL-10-dependent suppression of IL-12 production by filamentous hemagglutinin from Bordetella pertussis. Eur J Immunol 30: 415–422. PubMed

Coleman MM, Finlay CM, Moran B, Keane J, Dunne PJ, et al. (2012) The immunoregulatory role of CD4(+) FoxP3(+) CD25(−) regulatory T cells in lungs of mice infected with Bordetella pertussis. FEMS Immunol Med Microbiol 64: 413–424. PubMed

Anderson P, Gonzalez-Rey E (2010) Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. Mol Cell Biol 30: 2537–2551. PubMed PMC

Hamada H, Garcia-Hernandez Mde L, Reome JB, Misra SK, Strutt TM, et al. (2009) Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol 182: 3469–3481. PubMed PMC

Lamberti YA, Hayes JA, Perez Vidakovics ML, Harvill ET, Rodriguez ME (2010) Intracellular trafficking of Bordetella pertussis in human macrophages. Infect Immun 78: 907–913. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

cAMP signaling of Bordetella adenylate cyclase toxin blocks M-CSF triggered upregulation of iron acquisition receptors on differentiating CD14+ monocytes

. 2024 Aug 28 ; 9 (8) : e0040724. [epub] 20240730

Delivery of Mycobacterium tuberculosis epitopes by Bordetella pertussis adenylate cyclase toxoid expands HLA-E-restricted cytotoxic CD8+ T cells

. 2023 ; 14 () : 1289212. [epub] 20231201

Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes

. 2022 Jun ; 18 (6) : e1010577. [epub] 20220606

The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model

. 2022 Apr ; 18 (4) : e1010402. [epub] 20220408

Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation

. 2020 ; 11 () : 2181. [epub] 20200911

Phosphoproteomics of cAMP signaling of Bordetella adenylate cyclase toxin in mouse dendritic cells

. 2017 Nov 24 ; 7 (1) : 16298. [epub] 20171124

Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity

. 2017 Sep 21 ; 9 (10) : . [epub] 20170921

Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis

. 2017 Jun ; 85 (6) : . [epub] 20170523

Severe, but not mild heat-shock treatment induces immunogenic cell death in cancer cells

. 2017 ; 6 (5) : e1311433. [epub] 20170331

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...