Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers

. 2018 Mar ; 86 (3) : . [epub] 20180220

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29203545

The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.

Zobrazit více v PubMed

Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. 2016. Pertussis: microbiology, disease, treatment, and prevention. Clin Microbiol Rev 29:449–486. doi:10.1128/CMR.00083-15. PubMed DOI PMC

Melvin JA, Scheller EV, Miller JF, Cotter PA. 2014. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12:274–288. doi:10.1038/nrmicro3235. PubMed DOI PMC

Saukkonen K, Cabellos C, Burroughs M, Prasad S, Tuomanen E. 1991. Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med 173:1143–1149. doi:10.1084/jem.173.5.1143. PubMed DOI PMC

Friedman RL, Nordensson K, Wilson L, Akporiaye ET, Yocum DE. 1992. Uptake and intracellular survival of Bordetella pertussis in human macrophages. Infect Immun 60:4578–4585. PubMed PMC

Lamberti YA, Hayes JA, Perez Vidakovics ML, Harvill ET, Rodriguez ME. 2010. Intracellular trafficking of Bordetella pertussis in human macrophages. Infect Immun 78:907–913. doi:10.1128/IAI.01031-09. PubMed DOI PMC

Lamberti Y, Gorgojo J, Massillo C, Rodriguez ME. 2013. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival. Pathog Dis 69:194–204. doi:10.1111/2049-632X.12072. PubMed DOI

Bassinet L, Gueirard P, Maitre B, Housset B, Gounon P, Guiso N. 2000. Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect Immun 68:1934–1941. doi:10.1128/IAI.68.4.1934-1941.2000. PubMed DOI PMC

Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, Wu KH, Goldsmith CS, Greer PW, Montague JL, Eliason MT, Holman RC, Guarner J, Shieh WJ, Zaki SR. 2008. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis 47:328–338. doi:10.1086/589753. PubMed DOI

de Gouw D, Diavatopoulos DA, Bootsma HJ, Hermans PW, Mooi FR. 2011. Pertussis: a matter of immune modulation. FEMS Microbiol Rev 35:441–474. doi:10.1111/j.1574-6976.2010.00257.x. PubMed DOI

Fennelly NK, Sisti F, Higgins SC, Ross PJ, van der Heide H, Mooi FR, Boyd A, Mills KH. 2008. Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun 76:1257–1266. doi:10.1128/IAI.00836-07. PubMed DOI PMC

Weiss AA, Hewlett EL, Myers GA, Falkow S. 1984. Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J Infect Dis 150:219–222. doi:10.1093/infdis/150.2.219. PubMed DOI

Glaser P, Ladant D, Sezer O, Pichot F, Ullmann A, Danchin A. 1988. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol 2:19–30. doi:10.1111/j.1365-2958.1988.tb00003.x. PubMed DOI

Sebo P, Osicka R, Masin J. 2014. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev Vaccines 13:1215–1227. doi:10.1586/14760584.2014.944900. PubMed DOI

Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, Ladant D, Leclerc C. 2001. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193:1035–1044. doi:10.1084/jem.193.9.1035. PubMed DOI PMC

Bumba L, Masin J, Fiser R, Sebo P. 2010. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog 6:e1000901. doi:10.1371/journal.ppat.1000901. PubMed DOI PMC

Vojtova J, Kamanova J, Sebo P. 2006. Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Curr Opin Microbiol 9:69–75. doi:10.1016/j.mib.2005.12.011. PubMed DOI

Confer DL, Eaton JW. 1982. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217:948–950. doi:10.1126/science.6287574. PubMed DOI

Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P. 2017. cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through Epac-mediated inhibition of phospholipase C activity. J Immunol 198:1285–1296. doi:10.4049/jimmunol.1601309. PubMed DOI

Cerny O, Kamanova J, Masin J, Bibova I, Skopova K, Sebo P. 2015. Bordetella pertussis Adenylate cyclase toxin blocks induction of bactericidal nitric oxide in macrophages through cAMP-dependent activation of the SHP-1 phosphatase. J Immunol 194:4901–4913. doi:10.4049/jimmunol.1402941. PubMed DOI

Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, Sebo P. 2015. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife 4:e10766. doi:10.7554/eLife.10766. PubMed DOI PMC

Masin J, Osicka R, Bumba L, Sebo P. 2015. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog Dis 73:ftv075. doi:10.1093/femspd/ftv075. PubMed DOI PMC

Eby JC, Gray MC, Mangan AR, Donato GM, Hewlett EL. 2012. Role of CD11b/CD18 in the process of intoxication by the adenylate cyclase toxin of Bordetella pertussis. Infect Immun 80:850–859. doi:10.1128/IAI.05979-11. PubMed DOI PMC

Hanski E. 1989. Invasive adenylate cyclase toxin of Bordetella pertussis. Trends Biochem Sci 14:459–463. doi:10.1016/0968-0004(89)90106-0. PubMed DOI

Eby JC, Ciesla WP, Hamman W, Donato GM, Pickles RJ, Hewlett EL, Lencer WI. 2010. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J Biol Chem 285:10662–10670. doi:10.1074/jbc.M109.089219. PubMed DOI PMC

Donato GM, Goldsmith CS, Paddock CD, Eby JC, Gray MC, Hewlett EL. 2012. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett 586:459–465. doi:10.1016/j.febslet.2012.01.032. PubMed DOI PMC

Eby JC, Gray MC, Warfel JM, Paddock CD, Jones TF, Day SR, Bowden J, Poulter MD, Donato GM, Merkel TJ, Hewlett EL. 2013. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect Immun 81:1390–1398. doi:10.1128/IAI.00110-13. PubMed DOI PMC

Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun DI, Barinka C, Sebo P. 2016. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Mol Cell 62:47–62. doi:10.1016/j.molcel.2016.03.018. PubMed DOI

Gonyar LA, Gray MC, Christianson GJ, Mehrad B, Hewlett EL. 2017. Albumin, in the presence of calcium, elicits a massive increase in extracellular Bordetella adenylate cyclase toxin. Infect Immun 85:e00198-. doi:10.1128/IAI.00198-17. PubMed DOI PMC

Whitsett JA, Alenghat T. 2015. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 16:27–35. doi:10.1038/ni.3045. PubMed DOI PMC

Hovenberg HW, Davies JR, Carlstedt I. 1996. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J 318(Pt 1):319–324. PubMed PMC

Becker MN, Diamond G, Verghese MW, Randell SH. 2000. CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 275:29731–29736. doi:10.1074/jbc.M000184200. PubMed DOI

Weitnauer M, Mijosek V, Dalpke AH. 2016. Control of local immunity by airway epithelial cells. Mucosal Immunol 9:287–298. doi:10.1038/mi.2015.126. PubMed DOI

Stadnyk AW. 1994. Cytokine production by epithelial cells. FASEB J 8:1041–1047. PubMed

Kojima T, Go M, Takano K, Kurose M, Ohkuni T, Koizumi J, Kamekura R, Ogasawara N, Masaki T, Fuchimoto J, Obata K, Hirakawa S, Nomura K, Keira T, Miyata R, Fujii N, Tsutsumi H, Himi T, Sawada N. 2013. Regulation of tight junctions in upper airway epithelium. Biomed Res Int 2013:947072. doi:10.1155/2013/947072. PubMed DOI PMC

Asgrimsson V, Gudjonsson T, Gudmundsson GH, Baldursson O. 2006. Novel effects of azithromycin on tight junction proteins in human airway epithelia. Antimicrob Agents Chemother 50:1805–1812. doi:10.1128/AAC.50.5.1805-1812.2006. PubMed DOI PMC

Halldorsson S, Asgrimsson V, Axelsson I, Gudmundsson GH, Steinarsdottir M, Baldursson O, Gudjonsson T. 2007. Differentiation potential of a basal epithelial cell line established from human bronchial explant. In Vitro Cell Dev Biol Anim 43:283–289. PubMed

Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O. 2010. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 42:62–68. doi:10.1165/rcmb.2008-0357OC. PubMed DOI

Kulkarni NN, Yi Z, Huehnken C, Agerberth B, Gudmundsson GH. 2015. Phenylbutyrate induces cathelicidin expression via the vitamin D receptor: linkage to inflammatory and growth factor cytokines pathways. Mol Immunol 63:530–539. doi:10.1016/j.molimm.2014.10.007. PubMed DOI

Westrop GD, Campbell G, Kazi Y, Billcliffe B, Coote JG, Parton R, Freer JH, Edwards JG. 1994. A new assay for the invasive adenylate cyclase toxin of Bordetella pertussis based on its morphological effects on the fibronectin-stimulated spreading of BHK21 cells. Microbiology 140(Pt 2):245–253. PubMed

Ohnishi H, Miyake M, Kamitani S, Horiguchi Y. 2008. The morphological changes in cultured cells caused by Bordetella pertussis adenylate cyclase toxin. FEMS Microbiol Lett 279:174–179. doi:10.1111/j.1574-6968.2007.01028.x. PubMed DOI

Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, Benada O, Just I, Sebo P. 2008. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 181:5587–5597. doi:10.4049/jimmunol.181.8.5587. PubMed DOI

Belcher CE, Drenkow J, Kehoe B, Gingeras TR, McNamara N, Lemjabbar H, Basbaum C, Relman DA. 2000. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc Natl Acad Sci U S A 97:13847–13852. doi:10.1073/pnas.230262797. PubMed DOI PMC

Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C, Harper RW, Wu R. 2004. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173:3482–3491. doi:10.4049/jimmunol.173.5.3482. PubMed DOI

Tsai HC, Velichko S, Hung LY, Wu R. 2013. IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin Dev Immunol 2013:267971. doi:10.1155/2013/267971. PubMed DOI PMC

Warfel JM, Merkel TJ. 2014. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines 13:1241–1252. doi:10.1586/14760584.2014.946016. PubMed DOI

Guevara C, Zhang C, Gaddy JA, Iqbal J, Guerra J, Greenberg DP, Decker MD, Carbonetti N, Starner TD, McCray PB Jr, Mooi FR, Gomez-Duarte OG. 2016. Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis. Infect Dis (Lond) 48:177–188. doi:10.3109/23744235.2015.1100323. PubMed DOI PMC

Benediktsdottir BE, Arason AJ, Halldorsson S, Gudjonsson T, Masson M, Baldursson O. 2013. Drug delivery characteristics of the progenitor bronchial epithelial cell line VA10. Pharm Res 30:781–791. doi:10.1007/s11095-012-0919-x. PubMed DOI

Arason AJ, Jonsdottir HR, Halldorsson S, Benediktsdottir BE, Bergthorsson JT, Ingthorsson S, Baldursson O, Sinha S, Gudjonsson T, Magnusson MK. 2014. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium. PLoS One 9:e88683. doi:10.1371/journal.pone.0088683. PubMed DOI PMC

Barnes AP, Livera G, Huang P, Sun C, O'Neal WK, Conti M, Stutts MJ, Milgram SL. 2005. Phosphodiesterase 4D forms a cAMP diffusion barrier at the apical membrane of the airway epithelium. J Biol Chem 280:7997–8003. doi:10.1074/jbc.M407521200. PubMed DOI

Sheppard D. 1998. Airway epithelial integrins: why so many? Am J Respir Cell Mol Biol 19:349–351. doi:10.1165/ajrcmb.19.3.f144. PubMed DOI

Sheppard D. 2003. Functions of pulmonary epithelial integrins: from development to disease. Physiol Rev 83:673–686. doi:10.1152/physrev.00033.2002. PubMed DOI

Hasan S, Osickova A, Bumba L, Novak P, Sebo P, Osicka R. 2015. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett 589:374–379. doi:10.1016/j.febslet.2014.12.023. PubMed DOI

Morova J, Osicka R, Masin J, Sebo P. 2008. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci U S A 105:5355–5360. doi:10.1073/pnas.0711400105. PubMed DOI PMC

Gordon VM, Young WW Jr, Lechler SM, Gray MC, Leppla SH, Hewlett EL. 1989. Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J Biol Chem 264:14792–14796. PubMed

Vojtova J, Kofronova O, Sebo P, Benada O. 2006. Bordetella adenylate cyclase toxin induces a cascade of morphological changes of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc Res Tech 69:119–129. doi:10.1002/jemt.20277. PubMed DOI

Vermeer PD, Einwalter LA, Moninger TO, Rokhlina T, Kern JA, Zabner J, Welsh MJ. 2003. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422:322–326. doi:10.1038/nature01440. PubMed DOI

Humlicek AL, Manzel LJ, Chin CL, Shi L, Excoffon KJ, Winter MC, Shasby DM, Look DC. 2007. Paracellular permeability restricts airway epithelial responses to selectively allow activation by mediators at the basolateral surface. J Immunol 178:6395–6403. doi:10.4049/jimmunol.178.10.6395. PubMed DOI

Gasperini G, Arato V, Pizza M, Arico B, Leuzzi R. 2017. Physiopathological roles of spontaneously released outer membrane vesicles of Bordetella pertussis. Future Microbiol 12:1247–1259. doi:10.2217/fmb-2017-0064. PubMed DOI

Kwak YK, Vikstrom E, Magnusson KE, Vecsey-Semjen B, Colque-Navarro P, Mollby R. 2012. The Staphylococcus aureus alpha-toxin perturbs the barrier function in Caco-2 epithelial cell monolayers by altering junctional integrity. Infect Immun 80:1670–1680. doi:10.1128/IAI.00001-12. PubMed DOI PMC

Rutten MJ, Cogburn JN, Schasteen CS, Solomon T. 1991. Physiological and cytotoxic effects of Ca(2+) ionophores on Caco-2 paracellular permeability: relationship of 45Ca(2+) efflux to 51 Cr release. Pharmacology 42:156–168. doi:10.1159/000138793. PubMed DOI

Bhat M, Toledo-Velasquez D, Wang L, Malanga CJ, Ma JK, Rojanasakul Y. 1993. Regulation of tight junction permeability by calcium mediators and cell cytoskeleton in rabbit tracheal epithelium. Pharm Res 10:991–997. doi:10.1023/A:1018906504944. PubMed DOI

Tai YH, Flick J, Levine SA, Madara JL, Sharp GW, Donowitz M. 1996. Regulation of tight junction resistance in T84 monolayers by elevation in intracellular Ca2+: a protein kinase C effect. J Membr Biol 149:71–79. doi:10.1007/s002329900008. PubMed DOI

Fiser R, Masin J, Basler M, Krusek J, Spulakova V, Konopasek I, Sebo P. 2007. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 282:2808–2820. PubMed

Otero AS, Yi XB, Gray MC, Szabo G, Hewlett EL. 1995. Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem 270:9695–9697. doi:10.1074/jbc.270.17.9695. PubMed DOI

Fiser R, Masin J, Bumba L, Pospisilova E, Fayolle C, Basler M, Sadilkova L, Adkins I, Kamanova J, Cerny J, Konopasek I, Osicka R, Leclerc C, Sebo P. 2012. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores. PLoS Pathog 8:e1002580. doi:10.1371/journal.ppat.1002580. PubMed DOI PMC

Wald T, Petry-Podgorska I, Fiser R, Matousek T, Dedina J, Osicka R, Sebo P, Masin J. 2014. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin. Anal Biochem 450:57–62. doi:10.1016/j.ab.2013.10.039. PubMed DOI

Bacallao R, Garfinkel A, Monke S, Zampighi G, Mandel LJ. 1994. ATP depletion: a novel method to study junctional properties in epithelial tissues. I. Rearrangement of the actin cytoskeleton. J Cell Sci 107(Pt 12):3301–3313. PubMed

Brezillon S, Zahm JM, Pierrot D, Gaillard D, Hinnrasky J, Millart H, Klossek JM, Tummler B, Puchelle E. 1997. ATP depletion induces a loss of respiratory epithelium functional integrity and down-regulates CFTR (cystic fibrosis transmembrane conductance regulator) expression. J Biol Chem 272:27830–27838. doi:10.1074/jbc.272.44.27830. PubMed DOI

Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL. 1995. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A 92:10629–10633. doi:10.1073/pnas.92.23.10629. PubMed DOI PMC

Costantini TW, Deree J, Loomis W, Putnam JG, Choi S, Baird A, Eliceiri BP, Bansal V, Coimbra R. 2009. Phosphodiesterase inhibition attenuates alterations to the tight junction proteins occludin and ZO-1 in immunostimulated Caco-2 intestinal monolayers. Life Sci 84:18–22. doi:10.1016/j.lfs.2008.10.007. PubMed DOI

Gray T, Nettesheim P, Loftin C, Koo JS, Bonner J, Peddada S, Langenbach R. 2004. Interleukin-1beta-induced mucin production in human airway epithelium is mediated by cyclooxygenase-2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling. Mol Pharmacol 66:337–346. doi:10.1124/mol.66.2.337. PubMed DOI

Vidakovics ML, Lamberti Y, Serra D, Berbers GA, van der Pol WL, Rodriguez ME. 2007. Iron stress increases Bordetella pertussis mucin-binding capacity and attachment to respiratory epithelial cells. FEMS Immunol Med Microbiol 51:414–421. doi:10.1111/j.1574-695X.2007.00320.x. PubMed DOI

Warfel JM, Beren J, Merkel TJ. 2012. Airborne transmission of Bordetella pertussis. J Infect Dis 206:902–906. doi:10.1093/infdis/jis443. PubMed DOI PMC

Elahi S, Buchanan RM, Attah-Poku S, Townsend HG, Babiuk LA, Gerdts V. 2006. The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets. Infect Immun 74:2338–2352. doi:10.1128/IAI.74.4.2338-2352.2006. PubMed DOI PMC

Bassinet L, Fitting C, Housset B, Cavaillon JM, Guiso N. 2004. Bordetella pertussis adenylate cyclase-hemolysin induces interleukin-6 secretion by human tracheal epithelial cells. Infect Immun 72:5530–5533. doi:10.1128/IAI.72.9.5530-5533.2004. PubMed DOI PMC

Lawrence T. 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. doi:10.1101/cshperspect.a001651. PubMed DOI PMC

Tsutsumi-Ishii Y, Nagaoka I. 2002. NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J Leukoc Biol 71:154–162. PubMed

Gerlo S, Kooijman R, Beck IM, Kolmus K, Spooren A, Haegeman G. 2011. Cyclic AMP: a selective modulator of NF-kappaB action. Cell Mol Life Sci 68:3823–3841. doi:10.1007/s00018-011-0757-8. PubMed DOI PMC

Libermann TA, Baltimore D. 1990. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327–2334. doi:10.1128/MCB.10.5.2327. PubMed DOI PMC

Fujisawa T, Velichko S, Thai P, Hung LY, Huang F, Wu R. 2009. Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm. J Immunol 183:6236–6243. doi:10.4049/jimmunol.0900614. PubMed DOI PMC

Cogswell JP, Godlevski MM, Wisely GB, Clay WC, Leesnitzer LM, Ways JP, Gray JG. 1994. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol 153:712–723. PubMed

Altarejos JY, Montminy M. 2011. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151. doi:10.1038/nrm3072. PubMed DOI PMC

Parry GC, Mackman N. 1997. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J Immunol 159:5450–5456. PubMed

Chen Y, Garvin LM, Nickola TJ, Watson AM, Colberg-Poley AM, Rose MC. 2014. IL-1beta induction of MUC5AC gene expression is mediated by CREB and NF-kappaB and repressed by dexamethasone. Am J Physiol Lung Cell Mol Physiol 306:L797–L807. doi:10.1152/ajplung.00347.2013. PubMed DOI PMC

Hershko DD, Robb BW, Luo G, Hasselgren PO. 2002. Multiple transcription factors regulating the IL-6 gene are activated by cAMP in cultured Caco-2 cells. Am J Physiol Regul Integr Comp Physiol 283:R1140–R1148. doi:10.1152/ajpregu.00161.2002. PubMed DOI

Osicka R, Osickova A, Basar T, Guermonprez P, Rojas M, Leclerc C, Sebo P. 2000. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun 68:247–256. doi:10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC

Ladant D. 1988. Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J Biol Chem 263:2612–2618. PubMed

Terryn C, Sellami M, Fichel C, Diebold MD, Gangloff S, Le Naour R, Polette M, Zahm JM. 2013. Rapid method of quantification of tight-junction organization using image analysis. Cytometry A 83:235–241. doi:10.1002/cyto.a.22239. PubMed DOI

Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756. doi:10.1073/pnas.95.10.5752. PubMed DOI PMC

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dynamic Python-Based Method Provides Quantitative Analysis of Intercellular Junction Organization During S. pneumoniae Infection of the Respiratory Epithelium

. 2022 ; 12 () : 865528. [epub] 20220610

The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model

. 2022 Apr ; 18 (4) : e1010402. [epub] 20220408

Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein

. 2021 Aug 23 ; 22 (16) : . [epub] 20210823

A Mutation Upstream of the rplN-rpsD Ribosomal Operon Downregulates Bordetella pertussis Virulence Factor Production without Compromising Bacterial Survival within Human Macrophages

. 2020 Dec 08 ; 5 (6) : . [epub] 20201208

Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation

. 2020 ; 11 () : 2181. [epub] 20200911

Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin

. 2019 Apr 08 ; 9 (1) : 5758. [epub] 20190408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...