Hormonal and transcriptomic regulation of drought adaptation in barley roots and leaves

. 2025 May 11 ; 15 (1) : 16368. [epub] 20250511

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40350502

Grantová podpora
2020/38/E/NZ9/00346 Narodowe Centrum Nauki
2016/23/D/NZ9/01400 Narodowe Centrum Nauki
2016/23/D/NZ9/01400 Narodowe Centrum Nauki
2018/31/F/NZ2/03848 Narodowe Centrum Nauki
2020/38/E/NZ9/00346 Narodowe Centrum Nauki
2022-2027 Scottish Government
2022-2027 Scottish Government

Odkazy

PubMed 40350502
PubMed Central PMC12066718
DOI 10.1038/s41598-025-01590-2
PII: 10.1038/s41598-025-01590-2
Knihovny.cz E-zdroje

Drought poses a significant threat to global crop productivity and food security. In this study, we aimed to elucidate the impact of drought on transcriptional regulation and alternative splicing in barley (Hordeum vulgare), and to determine whether these transcriptomic alterations correlate with changes in hormonal profiles. We hypothesized that drought stress induces extensive reprogramming of gene expression, including alternative splicing events, and that these molecular responses are accompanied by tissue-specific shifts in hormone levels, ultimately underpinning adaptive responses in both leaves and roots. To test this, we performed RNA-seq and comprehensive hormone profiling on leaves and roots sampled at 25 days after planting under both optimal and drought conditions. Our analysis identified over 6,655 differentially expressed genes, with a substantial subset exhibiting differential alternative splicing. In leaves, drought primarily downregulated photosynthesis-related genes while upregulating pathways involved in water stress and abscisic acid (ABA) signaling. In contrast, roots displayed broader metabolic adjustments and significant isoform switching. Hormone analysis revealed marked ABA accumulation, particularly in roots, alongside organ-specific modulation of jasmonates and auxins. A limited assessment of the rhizosphere microbial community revealed low transcript abundance, underscoring the primacy of intrinsic plant responses. Collectively, these findings provide valuable insights into the multilayered adaptive strategies of barley under drought stress.

Zobrazit více v PubMed

Sato, H., Mizoi, J. & Shinozaki, K. Yamaguchi-Shinozaki, K. Complex plant responses to drought and heat stress under climate change. Plant J.117, 1873–1892 (2024). PubMed

Xie, W. et al. Decreases in global beer supply due to extreme drought and heat. Nat. Plants. 4, 964–973 (2018). PubMed

Benitez-Alfonso, Y. et al. Enhancing climate change resilience in agricultural crops. Curr. Biol.33, R1246–R1261 (2023). PubMed

Hirt, H. et al. PlantACT! – how to tackle the climate crisis. Trends Plant Sci.28, 537–543 (2023). PubMed

Okamoto, M. et al. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc. Natl. Acad. Sci. U S A. 110, 12132–12137 (2013). PubMed PMC

Sah, S. K., Reddy, K. R. & Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant. Sci.7, (2016). PubMed PMC

Iqbal, S. et al. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front. Plant Sci.12, (2022). PubMed PMC

Jogawat, A. et al. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiol. Plant.172, 1106–1132 (2021). PubMed

Calixto, C. P. G. et al. Cold-Dependent expression and alternative splicing of Arabidopsis long Non-coding RNAs. Front. Plant. Sci.10, 235 (2019). PubMed PMC

Laloum, T., Martín, G. & Duque, P. Alternative splicing control of abiotic stress responses. Trends Plant Sci.23, 140–150 (2018). PubMed

Sybilska, E. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Scientific Reports (2024). PubMed PMC

Chaudhary, S., Jabre, I., Reddy, A. S. N., Staiger, D. & Syed, N. H. Perspective on alternative splicing and proteome complexity in plants. Trends Plant Sci.24, 496–506 (2019). PubMed

Lee, H. et al. Genome-wide analysis of alternative splicing events during response to drought stress in tomato (Solanum lycopersicum L). J. Hortic. Sci. Biotechnol.95, 1–8 (2019).

Song, L. et al. Analysis of whole transcriptome RNA-seq data reveals many alternative splicing events in soybean roots under drought stress conditions. Genes (Basel). 11, 1520 (2020). PubMed PMC

Filichkin, S., Priest, H. D., Megraw, M. & Mockler, T. C. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. Curr. Opin. Plant. Biol.24, 125–135 (2015). PubMed

Xu, D. et al. Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought. Front. Plant Sci.14, (2023). PubMed PMC

Coulter, M. et al. BaRTv2: a highly resolved barley reference transcriptome for accurate transcript-specific RNA ‐seq quantification. Plant J.111, 1183–1202 (2022). PubMed PMC

de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science368, 270–274 (2020). PubMed

Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant. Biol.38, 155–163 (2017). PubMed PMC

Dodd, I., Zinovkina, N., Safronova, V. & Belimov, A. a. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol.157, 361–379 (2010).

Jochum, M. D. et al. Bioprospecting plant Growth-Promoting rhizobacteria that mitigate drought stress in grasses. Front. Microbiol.10, (2019). PubMed PMC

Naveed, M., Hussain, M. B., Zahir, Z. A., Mitter, B. & Sessitsch, A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant. Growth Regul.2, 121–131 (2014).

Bento, V. A. et al. The impact of climate change in wheat and barley yields in the Iberian Peninsula. Sci. Rep.11, 15484 (2021). PubMed PMC

Bertholdsson, N. O. Screening for barley waterlogging tolerance in nordic barley cultivars (Hordeum vulgare L.) using chlorophyll fluorescence on Hydroponically-Grown plants. Agronomy3, 376–390 (2013).

Dawson, I. K. et al. Barley: a translational model for adaptation to climate change. New. Phytol. 206, 913–931 (2015). PubMed

Zhang, Y. et al. Abscisic acid mediates barley rhizosheath formation under mild soil drying by promoting root hair growth and auxin response. Plant. Cell. Environ.44, 1935–1945 (2021). PubMed

Tartaglia, M. et al. Metatranscriptomics of pastures under drought stress show a rhizospheric meta-organism. Rhizosphere26, 100687 (2023).

Xu, L. et al. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere Microbiome dynamics. Nat. Commun.12, 3209 (2021). PubMed PMC

Alegria Terrazas, R. et al. A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Sci. Rep.10, 12916 (2020). PubMed PMC

Escudero-Martinez, C. et al. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat. Commun.13, 3443 (2022). PubMed PMC

Gaillochet, C. et al. A molecular network for functional versatility of HECATE transcription factors. Plant J.95, 57–70 (2018). PubMed

Gremski, K., Ditta, G. & Yanofsky, M. F. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development134, 3593–3601 (2007). PubMed

Dubois, M. et al. The ETHYLENE RESPONSE factors ERF6 and ERF11 antagonistically regulate Mannitol-Induced growth Inhibition in Arabidopsis. Plant Physiol.169, 166–179 (2015). PubMed PMC

Ahmad, R. et al. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant. Physiol.179, 1844–1860 (2019). PubMed PMC

Chen, H. et al. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol.10, 281 (2010). PubMed PMC

Lotkowska, M. E. et al. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol.169, 1862–1880 (2015). PubMed PMC

Nawy, T. et al. Transcriptional profile of the Arabidopsis root quiescent center. Plant. Cell.17, 1908–1925 (2005). PubMed PMC

Milne, L. et al. EORNA, a barley gene and transcript abundance database. Sci. Data. 8, 90 (2021). PubMed PMC

Pande, P. M., Azarbad, H., Tremblay, J., St-Arnaud, M. & Yergeau, E. Metatranscriptomic response of the wheat holobiont to decreasing soil water content. ISME COMMUN.3, 1–13 (2023). PubMed PMC

Rosado-Porto, D. et al. Soil metatranscriptome demonstrates a shift in C, N, and S metabolisms of a grassland ecosystem in response to elevated atmospheric CO2. Front. Microbiol.13, (2022). PubMed PMC

Sharma, P. K. et al. Comparative metatranscriptome analysis revealed broad response of microbial communities in two soil types, agriculture versus organic soil. J. Genet. Eng. Biotechnol.17, 6 (2019). PubMed PMC

Feng, Y., Zhao, Y., Li, Y., Zhou, J. & Shi, H. Improving photosynthesis and drought tolerance in Nicotiana tabacum L. by foliar application of Salicylic acid. All Life. 16, 2224936 (2023).

Wang, Y. et al. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. Front. Plant Sci.13, (2022). PubMed PMC

Karlova, R., Boer, D., Hayes, S. & Testerink, C. Root plasticity under abiotic stress. Plant Physiol.187, 1057–1070 (2021). PubMed PMC

Chimungu, J. G., Brown, K. M. & Lynch, J. P. Large root cortical cell size improves drought tolerance in Maize1[C][W][OPEN]. Plant. Physiol.166, 2166–2178 (2014). PubMed PMC

Hazman, M. & Brown, K. M. Progressive drought alters architectural and anatomical traits of rice roots. Rice11, 62 (2018). PubMed PMC

Beyer, S. et al. Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Funct. Integr. Genomics. 19, 91–107 (2019). PubMed

Ling, Q. & Jarvis, P. Regulation of Chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants. Curr. Biol.25, 2527–2534 (2015). PubMed PMC

Pratelli, R. et al. The ubiquitin E3 ligase LOSS OF GDU2 is required for GLUTAMINE DUMPER1-Induced amino acid secretion in Arabidopsis. Plant Physiol.158, 1628–1642 (2012). PubMed PMC

Niu, X. et al. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. Gene740, 144514 (2020). PubMed

Peixoto-Junior, R. F. et al. Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice Transgenic plants. PLOS ONE. 13, e0207534 (2018). PubMed PMC

Ganie, S. A. & Reddy, A. S. N. Stress-Induced changes in alternative splicing landscape in rice: functional significance of splice isoforms in stress tolerance. Biology (Basel). 10, 309 (2021). PubMed PMC

Harb, A. et al. The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Front. Plant. Sci.11, 618491 (2020). PubMed PMC

Kishor, P. B. K., Tiozon, R. N., Fernie, A. R. & Sreenivasulu, N. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends Plant Sci.27, 1283–1295 (2022). PubMed

Müller, M. & Munné-Bosch, S. Hormonal impact on photosynthesis and photoprotection in plants. Plant. Physiol.185, 1500–1522 (2021). PubMed PMC

Collin, A., Daszkowska-Golec, A., Kurowska, M. & Szarejko, I. Barley ABI5 (Abscisic acid INSENSITIVE 5) is involved in abscisic acid-Dependent drought response. Front. Plant. Sci.11, 1138 (2020). PubMed PMC

Yoshida, T. et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J.61, 672–685 (2010). PubMed

Marzec, M. et al. Barley Strigolactone signalling mutant hvd14.d reveals the role of Strigolactones in abscisic acid-dependent response to drought. Plant. Cell. Environ.43, 2239–2253 (2020). PubMed

Seiler, C. et al. Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant. Physiol.164, 1677–1696 (2014). PubMed PMC

Ogawa, D. et al. Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Sci. Rep.11, 6280 (2021). PubMed PMC

Ilyas, M. et al. Drought tolerance strategies in plants: A mechanistic approach. J. Plant Growth Regul.40, (2021).

Kim, J. Y. et al. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant. Cell.33, 511–530 (2021). PubMed PMC

Wang, X. et al. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. Crop J.9, 120–132 (2021).

Liu, Y. Wirén, N. Integration of nutrient and water availabilities via auxin into the root developmental program. Curr. Opin. Plant. Biol.65, 102117 (2022). von. PubMed

Kalve, S. et al. Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses. New. Phytol. 226, 1766–1780 (2020). PubMed

Janiak, A. et al. No time to waste: transcriptome study reveals that drought tolerance in barley May be attributed to stressed-Like expression patterns that exist before the occurrence of stress. Front. Plant. Sci.8, 2212 (2018). PubMed PMC

Mahalingam, R. et al. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. Front. Plant. Sci.13, (2022). PubMed PMC

Alawiye, T. & Babalola, O. Bacterial diversity and community structure in typical plant rhizosphere. Diversity11, 179 (2019).

Filippidou, S. et al. A combination of extreme environmental conditions favor the prevalence of Endospore-Forming Firmicutes. Front. Microbiol.7, 1707 (2016). PubMed PMC

Martínez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. & Mora, M. L. MECHANISMS AND PRACTICAL CONSIDERATIONS INVOLVED IN PLANT GROWTH PROMOTION BY RHIZOBACTERIA. J. Soil. Sci. Plant. Nutr.10, 293–319 (2010).

Rousk, J., Brookes, P. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem.42, 516–520 (2010).

Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B. & Sundaresan, V. Drought stress results in a Compartment-Specific restructuring of the rice Root-Associated microbiomes. mBio8, e00764–e00717 (2017). PubMed PMC

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 (2017). PubMed PMC

Sebestyén, E., Zawisza, M. & Eyras, E. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res.43, 1345–1356 (2015). PubMed PMC

Tian, F., Yang, D. C., Meng, Y. Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res.gkz102010.1093/nar/gkz1020 (2019). PubMed PMC

Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a snakemake workflow for assembly, annotation, and genomic Binning of metagenome sequence data. BMC Bioinform.21, 257 (2020). PubMed PMC

Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res.27, 824–834 (2017). PubMed PMC

Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res.47, D309–D314 (2019). PubMed PMC

Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol.17, e1009442 (2021). PubMed PMC

Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov.2, 100141 (2021). PubMed PMC

Pennanen, T. et al. Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb. Ecol.38, 168–179 (1999). PubMed

Płociniczak, T., Sinkkonen, A., Romantschuk, M. & Piotrowska-Seget, Z. Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl. Soil. Ecol.63, 1–7 (2013).

Bååth, E. & Anderson, T. H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem.35, 955–963 (2003).

Frostegard, A. & Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils. 22, 59–65 (1996).

Šimura, J. et al. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant. Physiol.177, 476–489 (2018). PubMed PMC

Schneider, M. et al. Transcriptome profiling of barley and tomato shoot and root meristems unravels physiological variations underlying photoperiodic sensitivity. PLoS One. 17, e0265981 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...