Limited response of primary nasal epithelial cells to Bordetella pertussis infection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-05466S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004597
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ200202001
Akademie Věd České Republiky
PubMed
40757824
PubMed Central
PMC12403849
DOI
10.1128/spectrum.01267-25
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella pertussis, BteA effector, air-liquid interface culture, airway epithelium, human nasal epithelial cell, type III secretion system,
- MeSH
- bakteriální proteiny metabolismus genetika MeSH
- Bordetella pertussis * patogenita genetika fyziologie MeSH
- epitelové buňky * mikrobiologie imunologie metabolismus MeSH
- faktory virulence rodu Bordetella metabolismus MeSH
- hlen mikrobiologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mucin 5AC metabolismus genetika MeSH
- nosní sliznice * mikrobiologie cytologie imunologie MeSH
- pertuse * mikrobiologie imunologie MeSH
- proteomika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- faktory virulence rodu Bordetella MeSH
- mucin 5AC MeSH
Bordetella pertussis is a Gram-negative coccobacillus that causes whooping cough or pertussis, a respiratory disease that has recently experienced a resurgence. Upon entering the respiratory tract, B. pertussis colonizes the airway epithelium and attaches to ciliated cells. Here, we used primary human nasal epithelial cells (hNECs) cultured at the air-liquid interface and investigated their interaction with B. pertussis B1917, focusing on the role of the type III secretion system effector protein BteA. In this model, which resembles the epithelial cells of nasal epithelium in vivo, B. pertussis B1917 localized predominantly in the overlying mucus and scarcely colonized the cell cilia. The colonization led to a gradual decline in epithelial barrier function, as shown by measurements of transepithelial electrical resistance (TEER) and staining of the tight junction protein zonula occludens 1. The decrease in TEER occurred independently of the cytotoxic effector protein BteA. Transcriptomic and proteomic analyses of hNECs showed only moderate changes following infection, primarily characterized by increased mucus production, including upregulation of mucin MUC5AC. No profound response to BteA was detected. Furthermore, the infection did not induce production of inflammatory cytokines, suggesting that B. pertussis B1917 evades recognition by hNECs in this model system. These results suggest that the mucus may serve as a niche that allows B. pertussis B1917 to minimize epithelial recognition and damage. The lack of a robust immune response further indicates that additional components of the nasal mucosa, such as innate immune cells, are likely required to initiate an effective host defense.IMPORTANCEThe nasal epithelium is the initial site where Bordetella pertussis comes into contact with the host during respiratory tract infection. In this study, human nasal epithelial cells cultured at the air-liquid interface were established as an in vitro model to investigate the early stages of B. pertussis infection. We showed that the clinical isolate B. pertussis B1917 resides in the mucus during the early stages of colonization without disrupting the epithelial barrier function. Infection results in moderate transcriptomic and proteomic changes, characterized by increased mucus production and minimal inflammatory signaling. These results suggest that B. pertussis B1917 may evade early host recognition by residing in mucus and avoiding direct interaction with epithelial cells. They also highlight the importance of other components of the mucosal immune system, such as resident immune cells, for the initiation of an effective defense.
Zobrazit více v PubMed
Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382. doi: 10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC
Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. 2017. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis 17:974–980. doi: 10.1016/S1473-3099(17)30390-0 PubMed DOI
Szwejser-Zawislak E, Wilk MM, Piszczek P, Krawczyk J, Wilczyńska D, Hozbor D. 2022. Evaluation of whole-cell and acellular pertussis vaccines in the context of long-term herd immunity. Vaccines (Basel) 11:1. doi: 10.3390/vaccines11010001 PubMed DOI PMC
Warfel JM, Zimmerman LI, Merkel TJ. 2014. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 111:787–792. doi: 10.1073/pnas.1314688110 PubMed DOI PMC
Schmitt P, Borkner L, Jazayeri SD, McCarthy KN, Mills KH. 2023. Nasal vaccines for pertussis. Curr Opin Immunol 84:102355. doi: 10.1016/j.coi.2023.102355 PubMed DOI
Borkner L, Curham LM, Wilk MM, Moran B, Mills KHG. 2021. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F PubMed DOI PMC
Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie AS, Coutte L, Locht C. 2021. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 6:6. doi: 10.1038/s41541-020-00270-8 PubMed DOI PMC
McCarthy KN, Hone S, McLoughlin RM, Mills KHG. 2024. IL-17 and IFN-γ-producing respiratory tissue-resident memory CD4 T cells persist for decades in adults immunized as children with whole-cell pertussis vaccines. J Infect Dis 230:e518–e523. doi: 10.1093/infdis/jiae034 PubMed DOI PMC
van Schuppen E, Fröberg J, Venkatasubramanian PB, Versteegen P, de Graaf H, Holubová J, Gillard J, van Gageldonk PGM, Joosten I, de Groot R, Šebo P, Berbers GAM, Read RC, Huynen MA, de Jonge MI, Diavatopoulos DA. 2022. Prior exposure to B. pertussis shapes the mucosal antibody response to acellular pertussis booster vaccination. Nat Commun 13:7429. doi: 10.1038/s41467-022-35165-w PubMed DOI PMC
Khalil A, Samara A, Campbell H, Ladhani SN, Amirthalingam G. 2024. Recent increase in infant pertussis cases in Europe and the critical importance of antenatal immunizations: we must do better…now. Int J Infect Dis 146:107148. doi: 10.1016/j.ijid.2024.107148 PubMed DOI
Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, Wu KH, Goldsmith CS, Greer PW, Montague JL, Eliason MT, Holman RC, Guarner J, Shieh WJ, Zaki SR. 2008. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis 47:328–338. doi: 10.1086/589753 PubMed DOI
Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. 2012. Nonhuman primate model of pertussis. Infect Immun 80:1530–1536. doi: 10.1128/IAI.06310-11 PubMed DOI PMC
Hewitt RJ, Lloyd CM. 2021. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21:347–362. doi: 10.1038/s41577-020-00477-9 PubMed DOI PMC
Davis JD, Wypych TP. 2021. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 14:978–990. doi: 10.1038/s41385-020-00370-7 PubMed DOI PMC
Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K, Simon LM, Brouwer S, Gomes T, Hesse L, Jiang J, et al. 2019. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 25:1153–1163. doi: 10.1038/s41591-019-0468-5 PubMed DOI
Deprez M, Zaragosi L-E, Truchi M, Becavin C, Ruiz García S, Arguel M-J, Plaisant M, Magnone V, Lebrigand K, Abelanet S, Brau F, Paquet A, Pe’er D, Marquette C-H, Leroy S, Barbry P. 2020. A single-cell atlas of the human healthy airways. Am J Respir Crit Care Med 202:1636–1645. doi: 10.1164/rccm.201911-2199OC PubMed DOI
Mihaylova VT, Kong Y, Fedorova O, Sharma L, Dela Cruz CS, Pyle AM, Iwasaki A, Foxman EF. 2018. Regional differences in airway epithelial cells reveal tradeoff between defense against oxidative stress and defense against rhinovirus. Cell Rep 24:3000–3007. doi: 10.1016/j.celrep.2018.08.033 PubMed DOI PMC
Comer DM, Elborn JS, Ennis M. 2012. Comparison of nasal and bronchial epithelial cells obtained from patients with COPD. PLoS One 7:e32924. doi: 10.1371/journal.pone.0032924 PubMed DOI PMC
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. 2021. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 12:2608–2632. doi: 10.1080/21505594.2021.1980987 PubMed DOI PMC
Confer DL, Eaton JW. 1982. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217:948–950. doi: 10.1126/science.6287574 PubMed DOI
Adkins I, Kamanova J, Kocourkova A, Svedova M, Tomala J, Janova H, Masin J, Chladkova B, Bumba L, Kovar M, Ross PJ, Tuckova L, Spisek R, Mills KHG, Sebo P. 2014. Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells. PLoS One 9:e104064. doi: 10.1371/journal.pone.0104064 PubMed DOI PMC
Klimova N, Holubova J, Streparola G, Tomala J, Brazdilova L, Stanek O, Bumba L, Sebo P. 2022. Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathog 18:e1010577. doi: 10.1371/journal.ppat.1010577 PubMed DOI PMC
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, Gudmundsson GH. 2018. Bordetella pertussis adenylate cyclase toxin disrupts functional integrity of bronchial epithelial layers. Infect Immun 86:e00445-17. doi: 10.1128/IAI.00445-17 PubMed DOI PMC
Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF. 2005. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 58:267–279. doi: 10.1111/j.1365-2958.2005.04823.x PubMed DOI
Kuwae A, Matsuzawa T, Ishikawa N, Abe H, Nonaka T, Fukuda H, Imajoh-Ohmi S, Abe A. 2006. BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J Biol Chem 281:6589–6600. doi: 10.1074/jbc.M512711200 PubMed DOI
French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. 2009. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 11:1735–1749. doi: 10.1111/j.1462-5822.2009.01361.x PubMed DOI PMC
Yuk MH, Harvill ET, Cotter PA, Miller JF. 2000. Modulation of host immune responses, induction of apoptosis and inhibition of NF-κB activation by the Bordetella type III secretion system. Mol Microbiol 35:991–1004. doi: 10.1046/j.1365-2958.2000.01785.x PubMed DOI
Pilione MR, Harvill ET. 2006. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect Immun 74:1043–1049. doi: 10.1128/IAI.74.2.1043-1049.2006 PubMed DOI PMC
Nicholson TL, Brockmeier SL, Loving CL, Register KB, Kehrli ME, Shore SM. 2014. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun 82:1092–1103. doi: 10.1128/IAI.01115-13 PubMed DOI PMC
Kamanova J. 2020. Bordetella type III secretion injectosome and effector proteins. Front Cell Infect Microbiol 10:466. doi: 10.3389/fcimb.2020.00466 PubMed DOI PMC
Gaillard ME, Bottero D, Castuma CE, Basile LA, Hozbor D. 2011. Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect Immun 79:3677–3682. doi: 10.1128/IAI.00136-11 PubMed DOI PMC
Fennelly NK, Sisti F, Higgins SC, Ross PJ, van der Heide H, Mooi FR, Boyd A, Mills KHG. 2008. Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect Immun 76:1257–1266. doi: 10.1128/IAI.00836-07 PubMed DOI PMC
Bayram J, Malcova I, Sinkovec L, Holubova J, Streparola G, Jurnecka D, Kucera J, Sedlacek R, Sebo P, Kamanova J. 2020. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog 16:e1008512. doi: 10.1371/journal.ppat.1008512 PubMed DOI PMC
Zmuda M, Sedlackova E, Pravdova B, Cizkova M, Dalecka M, Cerny O, Allsop TR, Grousl T, Malcova I, Kamanova J. 2024. The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis. MBio 15:e0192524. doi: 10.1128/mbio.01925-24 PubMed DOI PMC
Schmidt H, Guthjahr L, Sauter A, Zech F, Nchioua R, Stenger S, Frick M, Kirchhoff F, Dietl P, Wittekindt OH. 2022. Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. Am J Physiol Cell Physiol 322:C591–C604. doi: 10.1152/ajpcell.00363.2021 PubMed DOI PMC
Swart AL, Laventie B-J, Sütterlin R, Junne T, Lauer L, Manfredi P, Jakonia S, Yu X, Karagkiozi E, Okujava R, Jenal U. 2024. Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model. Nat Microbiol 9:1725–1737. doi: 10.1038/s41564-024-01718-6 PubMed DOI
Kroes MM, Miranda-Bedate A, Jacobi RHJ, van Woudenbergh E, den Hartog G, van Putten JPM, de Wit J, Pinelli E. 2022. Bordetella pertussis-infected innate immune cells drive the anti-pertussis response of human airway epithelium. Sci Rep 12:3622. doi: 10.1038/s41598-022-07603-8 PubMed DOI PMC
de Graaf H, Ibrahim M, Hill AR, Gbesemete D, Vaughan AT, Gorringe A, Preston A, Buisman AM, Faust SN, Kester KE, Berbers GAM, Diavatopoulos DA, Read RC. 2020. Controlled human infection with Bordetella pertussis induces asymptomatic, immunizing colonization. Clin Infect Dis 71:403–411. doi: 10.1093/cid/ciz840 PubMed DOI PMC
Bonser LR, Koh KD, Johansson K, Choksi SP, Cheng D, Liu L, Sun DI, Zlock LT, Eckalbar WL, Finkbeiner WE, Erle DJ. 2021. Flow-cytometric analysis and purification of airway epithelial-cell subsets. Am J Respir Cell Mol Biol 64:308–317. doi: 10.1165/rcmb.2020-0149MA PubMed DOI PMC
Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BLM. 2009. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106:12771–12775. doi: 10.1073/pnas.0906850106 PubMed DOI PMC
Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C, Wadsworth MH 2nd, Hughes TK, Kazer SW, Yoshimoto E, Cahill KN, Bhattacharyya N, Katz HR, Berger B, Laidlaw TM, Boyce JA, Barrett NA, Shalek AK. 2018. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560:649–654. doi: 10.1038/s41586-018-0449-8 PubMed DOI PMC
Duclos GE, Teixeira VH, Autissier P, Gesthalter YB, Reinders-Luinge MA, Terrano R, Dumas YM, Liu G, Mazzilli SA, Brandsma C-A, van den Berge M, Janes SM, Timens W, Lenburg ME, Spira A, Campbell JD, Beane J. 2019. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. Sci Adv 5:eaaw3413. doi: 10.1126/sciadv.aaw3413 PubMed DOI PMC
Basnet S, Bochkov YA, Brockman-Schneider RA, Kuipers I, Aesif SW, Jackson DJ, Lemanske RF, Ober C, Palmenberg AC, Gern JE. 2019. CDHR3 asthma-risk genotype affects susceptibility of airway epithelium to rhinovirus C infections. Am J Respir Cell Mol Biol 61:450–458. doi: 10.1165/rcmb.2018-0220OC PubMed DOI PMC
Zabini A, Zimmer Y, Medová M. 2023. Beyond keratinocyte differentiation: emerging new biology of small proline-rich proteins. Trends Cell Biol 33:5–8. doi: 10.1016/j.tcb.2022.08.002 PubMed DOI
Edwards JA, Groathouse NA, Boitano S. 2005. Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A. Infect Immun 73:3618–3626. doi: 10.1128/IAI.73.6.3618-3626.2005 PubMed DOI PMC
Guevara C, Zhang C, Gaddy JA, Iqbal J, Guerra J, Greenberg DP, Decker MD, Carbonetti N, Starner TD, McCray PB Jr, Mooi FR, Gómez-Duarte OG. 2016. Highly differentiated human airway epithelial cells: a model to study host cell-parasite interactions in pertussis. Infect Dis (Lond) 48:177–188. doi: 10.3109/23744235.2015.1100323 PubMed DOI PMC
Fullen AR, Gutierrez-Ferman JL, Rayner RE, Kim SH, Chen P, Dubey P, Wozniak DJ, Peeples ME, Cormet-Boyaka E, Deora R. 2023. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog 19:e1011193. doi: 10.1371/journal.ppat.1011193 PubMed DOI PMC
Tuomanen E, Weiss A. 1985. Characterization of two adhesins of Bordetella pertussis for human ciliated respiratory-epithelial cells. J Infect Dis 152:118–125. doi: 10.1093/infdis/152.1.118 PubMed DOI
van den Berg BM, Beekhuizen H, Willems RJ, Mooi FR, van Furth R. 1999. Role of Bordetella pertussis virulence factors in adherence to epithelial cell lines derived from the human respiratory tract. Infect Immun 67:1056–1062. doi: 10.1128/IAI.67.3.1056-1062.1999 PubMed DOI PMC
Pohl MO, Violaki K, Liu L, Gaggioli E, Glas I, von Kempis J, Lin C, Terrettaz C, David SC, Charlton F, Motos G, Bluvshtein N, Schaub A, Klein LK, Luo B, Hugentobler W, Krieger UK, Peter T, Kohn T, Nenes A, Stertz S. 2024. Comparative characterization of bronchial and nasal mucus reveals key determinants of influenza A virus inhibition. bioRxiv. doi: 10.1101/2024.09.17.613498 PubMed DOI
Eby JC, Gray MC, Warfel JM, Paddock CD, Jones TF, Day SR, Bowden J, Poulter MD, Donato GM, Merkel TJ, Hewlett EL. 2013. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection . Infect Immun 81:1390–1398. doi: 10.1128/IAI.00110-13 PubMed DOI PMC
Amini SE, Gouyer V, Portal C, Gottrand F, Desseyn JL. 2019. Muc5b is mainly expressed and sialylated in the nasal olfactory epithelium whereas Muc5ac is exclusively expressed and fucosylated in the nasal respiratory epithelium. Histochem Cell Biol 152:167–174. doi: 10.1007/s00418-019-01785-5 PubMed DOI
Zhou X, Kinlough CL, Hughey RP, Jin M, Inoue H, Etling E, Modena BD, Kaminski N, Bleecker ER, Meyers DA, Jarjour NN, Trudeau JB, Holguin F, Ray A, Wenzel SE. 2019. Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight 4. doi: 10.1172/jci.insight.122475 PubMed DOI PMC
Vidakovics MLAP, Lamberti Y, Serra D, Berbers GAM, van der Pol W-L, Rodriguez ME. 2007. Iron stress increases Bordetella pertussis mucin-binding capacity and attachment to respiratory epithelial cells. FEMS Immunol Med Microbiol 51:414–421. doi: 10.1111/j.1574-695X.2007.00320.x PubMed DOI
Ishikawa H, Isayama Y. 1987. Evidence for sialyl glycoconjugates as receptors for Bordetella bronchiseptica on swine nasal mucosa. Infect Immun 55:1607–1609. doi: 10.1128/iai.55.7.1607-1609.1987 PubMed DOI PMC
Belcher CE, Drenkow J, Kehoe B, Gingeras TR, McNamara N, Lemjabbar H, Basbaum C, Relman DA. 2000. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc Natl Acad Sci USA 97:13847–13852. doi: 10.1073/pnas.230262797 PubMed DOI PMC
Bassinet L, Gueirard P, Maitre B, Housset B, Gounon P, Guiso N. 2000. Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect Immun 68:1934–1941. doi: 10.1128/IAI.68.4.1934-1941.2000 PubMed DOI PMC
Lamberti Y, Gorgojo J, Massillo C, Rodriguez ME. 2013. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival. Pathog Dis 69:194–204. doi: 10.1111/2049-632X.12072 PubMed DOI
Baroli CM, Gorgojo JP, Blancá BM, Debandi M, Rodriguez ME. 2023. Bordetella pertussis targets the basolateral membrane of polarized respiratory epithelial cells, gets internalized, and survives in intracellular locations. Pathog Dis 81:ftad035. doi: 10.1093/femspd/ftad035 PubMed DOI
Sivarajan R, Kessie DK, Oberwinkler H, Pallmann N, Walles T, Scherzad A, Hackenberg S, Steinke M. 2021. Susceptibility of human airway tissue models derived from different anatomical sites to Bordetella pertussis and its virulence factor adenylate cyclase toxin. Front Cell Infect Microbiol 11:797491. doi: 10.3389/fcimb.2021.797491 PubMed DOI PMC
Thornton DJ, Sharpe C, Ridley C. 2018. Intracellular processing of human secreted polymeric airway mucins. Ann Am Thorac Soc 15:S154–S158. doi: 10.1513/AnnalsATS.201802-143AW PubMed DOI PMC
Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN, Bellinghausen LK, Song AS, Petrova YM, et al. 2014. Muc5b is required for airway defence. Nature 505:412–416. doi: 10.1038/nature12807 PubMed DOI PMC
Bonser LR, Zlock L, Finkbeiner W, Erle DJ. 2016. Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J Clin Invest 126:2367–2371. doi: 10.1172/JCI84910 PubMed DOI PMC
Kessie DK, Lodes N, Oberwinkler H, Goldman WE, Walles T, Steinke M, Gross R. 2020. Activity of tracheal cytotoxin of Bordetella pertussis in a human tracheobronchial 3D tissue model. Front Cell Infect Microbiol 10:614994. doi: 10.3389/fcimb.2020.614994 PubMed DOI PMC
Goldman WE, Cookson BT. 1988. Structure and functions of the Bordetella tracheal cytotoxin. Tokai J Exp Clin Med 13 Suppl:187–191. PubMed
Malandra A, Rahman WU, Klimova N, Streparola G, Holubova J, Osickova A, Bariselli S, Sebo P, Osicka R. 2021. Bordetella adenylate cyclase toxin elicits airway mucin secretion through activation of the cAMP response element binding protein. Int J Mol Sci 22:9064. doi: 10.3390/ijms22169064 PubMed DOI PMC
Fujisawa T, Velichko S, Thai P, Hung LY, Huang F, Wu R. 2009. Regulation of airway MUC5AC expression by IL-1β and IL-17A; the NF-κB paradigm. J Immunol 183:6236–6243. doi: 10.4049/jimmunol.0900614 PubMed DOI PMC
Thai P, Loukoianov A, Wachi S, Wu R. 2008. Regulation of airway mucin gene expression. Annu Rev Physiol 70:405–429. doi: 10.1146/annurev.physiol.70.113006.100441 PubMed DOI PMC
Petráčková D, Farman MR, Amman F, Linhartová I, Dienstbier A, Kumar D, Držmíšek J, Hofacker I, Rodriguez ME, Večerek B. 2020. Transcriptional profiling of human macrophages during infection with Bordetella pertussis RNA Biol 17:731–742. doi: 10.1080/15476286.2020.1727694 PubMed DOI PMC
McClure R, Massari P. 2014. TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Front Immunol 5:386. doi: 10.3389/fimmu.2014.00386 PubMed DOI PMC
Jia HP, Kline JN, Penisten A, Apicella MA, Gioannini TL, Weiss J, McCray PB Jr. 2004. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 287:L428–L437. doi: 10.1152/ajplung.00377.2003 PubMed DOI
den Hartog G, Schijf MA, Berbers GAM, van der Klis FRM, Buisman A-M. 2022. Bordetella pertussis induces interferon gamma production by natural killer cells, resulting in chemoattraction by respiratory epithelial cells. J Infect Dis 225:1248–1260. doi: 10.1093/infdis/jiaa140 PubMed DOI PMC
Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433. doi: 10.1126/science.1698311 PubMed DOI
Caroff M, Brisson J, Martin A, Karibian D. 2000. Structure of the Bordetella pertussis 1414 endotoxin. FEBS Lett 477:8–14. doi: 10.1016/s0014-5793(00)01720-8 PubMed DOI
Erridge C, Bennett-Guerrero E, Poxton IR. 2002. Structure and function of lipopolysaccharides. Microbes Infect 4:837–851. doi: 10.1016/s1286-4579(02)01604-0 PubMed DOI
Ganz T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720. doi: 10.1038/nri1180 PubMed DOI
Legarda D, Klein-Patel ME, Yim S, Yuk MH, Diamond G. 2005. Suppression of NF-κB-mediated β-defensin gene expression in the mammalian airway by the Bordetella type III secretion system. Cell Microbiol 7:489–497. doi: 10.1111/j.1462-5822.2004.00473.x PubMed DOI PMC
Ryan LK, Wu J, Schwartz K, Yim S, Diamond G. 2018. β-defensins coordinate in vivo to inhibit bacterial infections of the trachea. Vaccines (Basel) 6:57. doi: 10.3390/vaccines6030057 PubMed DOI PMC
Kurushima J, Kuwae A, Abe A. 2012. The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica. PLoS One 7:e38925. doi: 10.1371/journal.pone.0038925 PubMed DOI PMC
Ahuja U, Shokeen B, Cheng N, Cho Y, Blum C, Coppola G, Miller JF. 2016. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-σ factor. Proc Natl Acad Sci USA 113:2341–2348. doi: 10.1073/pnas.1600320113 PubMed DOI PMC
Držmíšek J, Petráčková D, Dienstbier A, Čurnová I, Večerek B. 2023. T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis Emerg Microbes Infect 12:2272638. doi: 10.1080/22221751.2023.2272638 PubMed DOI PMC
Mattoo S, Yuk MH, Huang LL, Miller JF. 2004. Regulation of type III secretion in Bordetella. Mol Microbiol 52:1201–1214. doi: 10.1111/j.1365-2958.2004.04053.x PubMed DOI
Kozak NA, Mattoo S, Foreman-Wykert AK, Whitelegge JP, Miller JF. 2005. Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol 187:5665–5676. doi: 10.1128/JB.187.16.5665-5676.2005 PubMed DOI PMC
Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J. 2023. BopN is a gatekeeper of the Bordetella type III secretion system. Microbiol Spectr 11:e0411222. doi: 10.1128/spectrum.04112-22 PubMed DOI PMC
Bibova I, Hot D, Keidel K, Amman F, Slupek S, Cerny O, Gross R, Vecerek B. 2015. Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality. RNA Biol 12:175–185. doi: 10.1080/15476286.2015.1017237 PubMed DOI PMC
Dienstbier A, Amman F, Štipl D, Petráčková D, Večerek B. 2019. Comparative integrated omics analysis of the Hfq regulon in Bordetella pertussis Int J Mol Sci 20:3073. doi: 10.3390/ijms20123073 PubMed DOI PMC
Gutierrez M de la P, Wong TY, Damron FH, Fernández J, Sisti F. 2022. Cyclic di-GMP regulates the type III secretion system and virulence in Bordetella bronchiseptica. Infect Immun 90:e0010722. doi: 10.1128/iai.00107-22 PubMed DOI PMC
Belhart K, Sisti F, Gestal MC, Fernández J. 2023. Bordetella bronchiseptica diguanylate cyclase BdcB inhibits the type three secretion system and impacts the immune response. Sci Rep 13:7157. doi: 10.1038/s41598-023-34106-x PubMed DOI PMC
Wong TY, Hall JM, Nowak ES, Boehm DT, Gonyar LA, Hewlett EL, Eby JC, Barbier M, Damron FH. 2019. Analysis of the in vivo transcriptome of Bordetella pertussis during infection of mice. mSphere 4. doi: 10.1128/mSphereDirect.00154-19 PubMed DOI PMC
van Beek LF, de Gouw D, Eleveld MJ, Bootsma HJ, de Jonge MI, Mooi FR, Zomer A, Diavatopoulos DA. 2018. Adaptation of Bordetella pertussis to the respiratory tract. J Infect Dis 217:1987–1996. doi: 10.1093/infdis/jiy125 PubMed DOI
Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H, Okamoto M, Montminy M. 2004. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119:61–74. doi: 10.1016/j.cell.2004.09.015 PubMed DOI
Ribeyre C, Zellweger R, Chauvin M, Bec N, Larroque C, Lopes M, Constantinou A. 2016. Nascent DNA proteomics reveals a chromatin remodeler required for topoisomerase I loading at replication forks. Cell Rep 15:300–309. doi: 10.1016/j.celrep.2016.03.027 PubMed DOI
Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I, Demmers J, Galjart N, Houtsmuller AB, Grosveld F, Akhmanova A. 2006. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev Cell 11:21–32. doi: 10.1016/j.devcel.2006.05.012 PubMed DOI
Luo M, Huang Z, Yang X, Chen Y, Jiang J, Zhang L, Zhou L, Qin S, Jin P, Fu S, et al. 2022. PHLDB2 mediates cetuximab resistance via interacting with EGFR in latent metastasis of colorectal cancer. Cell Mol Gastroenterol Hepatol 13:1223–1242. doi: 10.1016/j.jcmgh.2021.12.011 PubMed DOI PMC
Harshil Patel PE, Manning J, Garcia MU, Peltzer A, Hammarén R, Botvinnik O, Talbot A, Sturm G, Zepper M, Moreno D, et al. 2024. Nf-core/rnaseq: nf-core/rnaseq v3.18.0 - Lithium Lynx (3.18.0). Zenodo. Available from: https://zenodo.org/records/14537300
Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. 2020. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38:276–278. doi: 10.1038/s41587-020-0439-x PubMed DOI
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. doi: 10.1093/nar/gkv007 PubMed DOI PMC
Malcova I, Bumba L, Uljanic F, Kuzmenko D, Nedomova J, Kamanova J. 2021. Lipid binding by the N-terminal motif mediates plasma membrane localization of Bordetella effector protein BteA. J Biol Chem 296:100607. doi: 10.1016/j.jbc.2021.100607 PubMed DOI PMC
Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A, Hink MA, Gadella TWJ Jr. 2017. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14:53–56. doi: 10.1038/nmeth.4074 PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Stephens M. 2017. False discovery rates: a new deal. Biostatistics 18:275–294. doi: 10.1093/biostatistics/kxw041 PubMed DOI PMC
Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. doi: 10.1038/nprot.2007.261 PubMed DOI
Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng L-Y, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L. 2015. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14:1400–1410. doi: 10.1074/mcp.M114.044305 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. doi: 10.1038/nmeth.3901 PubMed DOI
Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, John NS, Prakash A, Walzer M, Wang S, Vizcaíno JA. 2025. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res 53:D543–D553. doi: 10.1093/nar/gkae1011 PubMed DOI PMC