BopN is a Gatekeeper of the Bordetella Type III Secretion System
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37036369
PubMed Central
PMC10269732
DOI
10.1128/spectrum.04112-22
Knihovny.cz E-zdroje
- Klíčová slova
- BopN, Bordetella, gatekeeper, type III secretion system,
- MeSH
- bakteriální proteiny metabolismus MeSH
- Bordetella pertussis metabolismus MeSH
- faktory virulence metabolismus MeSH
- lidé MeSH
- pertuse * MeSH
- savci MeSH
- sekreční systém typu III * metabolismus MeSH
- vápník MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- faktory virulence MeSH
- sekreční systém typu III * MeSH
- vápník MeSH
The classical Bordetella species infect the respiratory tract of mammals. While B. bronchiseptica causes rather chronic respiratory infections in a variety of mammals, the human-adapted species B. pertussis and B. parapertussisHU cause an acute respiratory disease known as whooping cough or pertussis. The virulence factors include a type III secretion system (T3SS) that translocates effectors BteA and BopN into host cells. However, the regulatory mechanisms underlying the secretion and translocation activity of T3SS in bordetellae are largely unknown. We have solved the crystal structure of BopN of B. pertussis and show that it is similar to the structures of gatekeepers that control access to the T3SS channel from the bacterial cytoplasm. We further found that BopN accumulates at the cell periphery at physiological concentrations of calcium ions (2 mM) that inhibit the secretion of BteA and BopN. Deletion of the bopN gene in B. bronchiseptica increased secretion of the BteA effector into calcium-rich medium but had no effect on secretion of the T3SS translocon components BopD and BopB. Moreover, the ΔbopN mutant secreted approximately 10-fold higher amounts of BteA into the medium of infected cells than the wild-type bacteria, but it translocated lower amounts of BteA into the host cell cytoplasm. These data demonstrate that BopN is a Bordetella T3SS gatekeeper required for regulated and targeted translocation of the BteA effector through the T3SS injectisome into host cells. IMPORTANCE The T3SS is utilized by many Gram-negative bacteria to deliver effector proteins from bacterial cytosol directly into infected host cell cytoplasm in a regulated and targeted manner. Pathogenic bordetellae use the T3SS to inject the BteA and BopN proteins into infected cells and upregulate the production of the anti-inflammatory cytokine interleukin-10 (IL-10) to evade host immunity. Previous studies proposed that BopN acted as an effector in host cells. In this study, we report that BopN is a T3SS gatekeeper that regulates the secretion and translocation activity of Bordetella T3SS.
Zobrazit více v PubMed
Berbers G, van Gageldonk P, van de Kassteele J, Wiedermann U, Desombere I, Dalby T, Toubiana J, Tsiodras S, Ferencz IP, Mullan K, Griskevicius A, Kolupajeva T, Vestrheim DF, Palminha P, Popovici O, Wehlin L, Kastrin T, Maďarová L, Campbell H, Ködmön C, Bacci S, Barkoff A-M, He Q, Serosurveillance Study T . 2021. Circulation of pertussis and poor protection against diphtheria among middle-aged adults in 18 European countries. Nat Commun 12:2871. doi:10.1038/s41467-021-23114-y. PubMed DOI PMC
Goodnow RA. 1980. Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738. doi:10.1128/mr.44.4.722-738.1980. PubMed DOI PMC
Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382. doi:10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, Cerdeño-Tárraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, et al. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40. doi:10.1038/ng1227. PubMed DOI
Yuk MH, Harvill ET, Miller JF. 1998. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28:945–959. doi:10.1046/j.1365-2958.1998.00850.x. PubMed DOI
Yuk MH, Harvill ET, Cotter PA, Miller JF. 2000. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol Microbiol 35:991–1004. doi:10.1046/j.1365-2958.2000.01785.x. PubMed DOI
Nicholson TL, Brockmeier SL, Loving CL, Register KB, Kehrli ME, Jr, Shore SM. 2014. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun 82:1092–1103. doi:10.1128/IAI.01115-13. PubMed DOI PMC
Kamanova J. 2020. Bordetella type III secretion injectosome and effector proteins. Front Cell Infect Microbiol 10:466. doi:10.3389/fcimb.2020.00466. PubMed DOI PMC
Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF. 2005. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 58:267–279. doi:10.1111/j.1365-2958.2005.04823.x. PubMed DOI
Abe A, Nishimura R, Kuwae A. 2017. Bordetella effector BopN is translocated into host cells via its N-terminal residues. Microbiol Immunol 61:206–214. doi:10.1111/1348-0421.12489. PubMed DOI
Kuwae A, Ohishi M, Watanabe M, Nagai M, Abe A. 2003. BopB is a type III secreted protein in Bordetella bronchiseptica and is required for cytotoxicity against cultured mammalian cells. Cell Microbiol 5:973–983. doi:10.1046/j.1462-5822.2003.00341.x. PubMed DOI
Nogawa H, Kuwae A, Matsuzawa T, Abe A. 2004. The type III secreted protein BopD in Bordetella bronchiseptica is complexed with BopB for pore formation on the host plasma membrane. J Bacteriol 186:3806–3813. doi:10.1128/JB.186.12.3806-3813.2004. PubMed DOI PMC
Medhekar B, Shrivastava R, Mattoo S, Gingery M, Miller JF. 2009. Bordetella Bsp22 forms a filamentous type III secretion system tip complex and is immunoprotective in vitro and in vivo. Mol Microbiol 71:492–504. doi:10.1111/j.1365-2958.2008.06543.x. PubMed DOI PMC
Kuwae A, Matsuzawa T, Ishikawa N, Abe H, Nonaka T, Fukuda H, Imajoh-Ohmi S, Abe A. 2006. BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J Biol Chem 281:6589–6600. doi:10.1074/jbc.M512711200. PubMed DOI
Stockbauer KE, Foreman-Wykert AK, Miller JF. 2003. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol 5:123–132. doi:10.1046/j.1462-5822.2003.00260.x. PubMed DOI
French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. 2009. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 11:1735–1749. doi:10.1111/j.1462-5822.2009.01361.x. PubMed DOI PMC
Malcova I, Bumba L, Uljanic F, Kuzmenko D, Nedomova J, Kamanova J. 2021. Lipid binding by the N-terminal motif mediates plasma membrane localization of Bordetella effector protein BteA. J Biol Chem 296:100607. doi:10.1016/j.jbc.2021.100607. PubMed DOI PMC
Bayram J, Malcova I, Sinkovec L, Holubova J, Streparola G, Jurnecka D, Kucera J, Sedlacek R, Sebo P, Kamanova J. 2020. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog 16:e1008512. doi:10.1371/journal.ppat.1008512. PubMed DOI PMC
Nagamatsu K, Kuwae A, Konaka T, Nagai S, Yoshida S, Eguchi M, Watanabe M, Mimuro H, Koyasu S, Abe A. 2009. Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J Exp Med 206:3073–3088. doi:10.1084/jem.20090494. PubMed DOI PMC
Kerr JR, Rigg GP, Matthews RC, Burnie JP. 1999. The Bpel locus encodes type III secretion machinery in Bordetella pertussis. Microb Pathog 27:349–367. doi:10.1006/mpat.1999.0307. PubMed DOI
Fauconnier A, Veithen A, Gueirard P, Antoine R, Wacheul L, Locht C, Bollen A, Godfroid E. 2001. Characterization of the type III secretion locus of Bordetella pertussis. Int J Med Microbiol 290:693–705. doi:10.1016/S1438-4221(01)80009-6. PubMed DOI
Diepold A, Wagner S. 2014. Assembly of the bacterial type III secretion machinery. FEMS Microbiol Rev 38:802–822. doi:10.1111/1574-6976.12061. PubMed DOI
Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. 2016. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem Sci 41:175–189. doi:10.1016/j.tibs.2015.09.005. PubMed DOI
Forsberg A, Bolin I, Norlander L, Wolf-Watz H. 1987. Molecular cloning and expression of calcium-regulated, plasmid-coded proteins of Y. pseudotuberculosis. Microb Pathog 2:123–137. doi:10.1016/0882-4010(87)90104-5. PubMed DOI
Lee VT, Mazmanian SK, Schneewind O. 2001. A program of Yersinia enterocolitica type III secretion reactions is activated by specific signals. J Bacteriol 183:4970–4978. doi:10.1128/JB.183.17.4970-4978.2001. PubMed DOI PMC
Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S, Gruenheid S, Strynakda NC, Puente JL, Finlay BB. 2005. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73:2135–2146. doi:10.1128/IAI.73.4.2135-2146.2005. PubMed DOI PMC
Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW. 2010. pH sensing by intracellular Salmonella induces effector translocation. Science 328:1040–1043. doi:10.1126/science.1189000. PubMed DOI PMC
Bahrani FK, Sansonetti PJ, Parsot C. 1997. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect Immun 65:4005–4010. doi:10.1128/iai.65.10.4005-4010.1997. PubMed DOI PMC
Tandhavanant S, Matsuda S, Hiyoshi H, Iida T, Kodama T. 2018. Vibrio parahaemolyticus senses intracellular K(+) to translocate type III secretion system 2 effectors effectively. mBio 9:e01366-18. doi:10.1128/mBio.01366-18. PubMed DOI PMC
Shen DK, Blocker AJ. 2016. MxiA, MxiC and IpaD regulate substrate selection and secretion mode in the T3SS of Shigella flexneri. PLoS One 11:e0155141. doi:10.1371/journal.pone.0155141. PubMed DOI PMC
Portaliou AG, Tsolis KC, Loos MS, Balabanidou V, Rayo J, Tsirigotaki A, Crepin VF, Frankel G, Kalodimos CG, Karamanou S, Economou A. 2017. Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli. EMBO J 36:3517–3531. doi:10.15252/embj.201797515. PubMed DOI PMC
Gaytan MO, Monjaras Feria J, Soto E, Espinosa N, Benitez JM, Georgellis D, Gonzalez-Pedrajo B. 2018. Novel insights into the mechanism of SepL-mediated control of effector secretion in enteropathogenic Escherichia coli. Microbiologyopen 7:e00571. doi:10.1002/mbo3.571. PubMed DOI PMC
Yu XJ, Grabe GJ, Liu M, Mota LJ, Holden DW. 2018. SsaV Interacts with SsaL to control the translocon-to-effector switch in the Salmonella SPI-2 type three secretion system. mBio 9:e01149-18. doi:10.1128/mBio.01149-18. PubMed DOI PMC
Cheng LW, Kay O, Schneewind O. 2001. Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol 183:5293–5301. doi:10.1128/JB.183.18.5293-5301.2001. PubMed DOI PMC
Boland A, Sory MP, Iriarte M, Kerbourch C, Wattiau P, Cornelis GR. 1996. Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y.enterocolitica is internalized inside the cytosol of PU5-1.8 macrophages by the YopB, D, N delivery apparatus. EMBO J 15:5191–5201. doi:10.1002/j.1460-2075.1996.tb00904.x. PubMed DOI PMC
Bamyaci S, Ekestubbe S, Nordfelth R, Erttmann SF, Edgren T, Forsberg A. 2018. YopN Is required for efficient effector translocation and virulence in Yersinia pseudotuberculosis. Infect Immun 86:e00957-17. doi:10.1128/IAI.00957-17. PubMed DOI PMC
Rosqvist R, Magnusson KE, Wolf-Watz H. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13:964–972. doi:10.1002/j.1460-2075.1994.tb06341.x. PubMed DOI PMC
Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A. 2009. MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 71:449–460. doi:10.1111/j.1365-2958.2008.06537.x. PubMed DOI
Fields KA, Hackstadt T. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38:1048–1060. doi:10.1046/j.1365-2958.2000.02212.x. PubMed DOI
Huang J, Lesser CF, Lory S. 2008. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 456:112–115. doi:10.1038/nature07355. PubMed DOI PMC
Archuleta TL, Du Y, English CA, Lory S, Lesser C, Ohi MD, Ohi R, Spiller BW. 2011. The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J Biol Chem 286:33992–33998. doi:10.1074/jbc.M111.258426. PubMed DOI PMC
Nawrotek A, Guimaraes BG, Velours C, Subtil A, Knossow M, Gigant B. 2014. Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae. J Biol Chem 289:25199–25210. doi:10.1074/jbc.M114.568436. PubMed DOI PMC
Holm L. 2020. Using dali for protein structure comparison. Methods Mol Biol 2112:29–42. doi:10.1007/978-1-0716-0270-6_3. PubMed DOI
Deane JE, Roversi P, King C, Johnson S, Lea SM. 2008. Structures of the Shigella flexneri type 3 secretion system protein MxiC reveal conformational variability amongst homologues. J Mol Biol 377:985–992. doi:10.1016/j.jmb.2008.01.072. PubMed DOI PMC
Burkinshaw BJ, Souza SA, Strynadka NC. 2015. Structural analysis of SepL, an enteropathogenic Escherichia coli type III secretion-system gatekeeper protein. Acta Crystallogr F Struct Biol Commun 71:1300–1308. doi:10.1107/S2053230X15016064. PubMed DOI PMC
Schubot FD, Jackson MW, Penrose KJ, Cherry S, Tropea JE, Plano GV, Waugh DS. 2005. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol 346:1147–1161. doi:10.1016/j.jmb.2004.12.036. PubMed DOI
Holm L, Kaariainen S, Rosenstrom P, Schenkel A. 2008. Searching protein structure databases with DaliLite v.3. Bioinformatics 24:2780–2781. doi:10.1093/bioinformatics/btn507. PubMed DOI PMC
Westerhausen S, Nowak M, Torres-Vargas CE, Bilitewski U, Bohn E, Grin I, Wagner S. 2020. A NanoLuc luciferase-based assay enabling the real-time analysis of protein secretion and injection by bacterial type III secretion systems. Mol Microbiol 113:1240–1254. doi:10.1111/mmi.14490. PubMed DOI
Braet J, Catteeuw D, Van Damme P. 2022. Recent advancements in tracking bacterial effector protein translocation. Microorganisms 10. doi:10.3390/microorganisms10020260. PubMed DOI PMC
Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS, Hurst R, Hall MP, Encell LP, Binkowski BF, Wood KV. 2018. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem Biol 13:467–474. doi:10.1021/acschembio.7b00549. PubMed DOI
Galan JE, Lara-Tejero M, Marlovits TC, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438. doi:10.1146/annurev-micro-092412-155725. PubMed DOI PMC
Notti RQ, Stebbins CE. 2016. The structure and function of type III secretion systems. Microbiol Spectr 4. doi:10.1128/microbiolspec.VMBF-0004-2015. PubMed DOI PMC
Iriarte M, Sory MP, Boland A, Boyd AP, Mills SD, Lambermont I, Cornelis GR. 1998. TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. EMBO J 17:1907–1918. doi:10.1093/emboj/17.7.1907. PubMed DOI PMC
Ferracci F, Schubot FD, Waugh DS, Plano GV. 2005. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol 57:970–987. doi:10.1111/j.1365-2958.2005.04738.x. PubMed DOI
Kubori T, Galan JE. 2002. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol 184:4699–4708. doi:10.1128/JB.184.17.4699-4708.2002. PubMed DOI PMC
Deane JE, Abrusci P, Johnson S, Lea SM. 2010. Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075. doi:10.1007/s00018-009-0230-0. PubMed DOI PMC
Younis R, Bingle LE, Rollauer S, Munera D, Busby SJ, Johnson S, Deane JE, Lea SM, Frankel G, Pallen MJ. 2010. SepL resembles an aberrant effector in binding to a class 1 type III secretion chaperone and carrying an N-terminal secretion signal. J Bacteriol 192:6093–6098. doi:10.1128/JB.00760-10. PubMed DOI PMC
Akeda Y, Galan JE. 2005. Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915. doi:10.1038/nature03992. PubMed DOI
Milne-Davies B, Helbig C, Wimmi S, Cheng DWC, Paczia N, Diepold A. 2019. Life after secretion-Yersinia enterocolitica rapidly toggles effector secretion and can resume cell division in response to changing external conditions. Front Microbiol 10:2128. doi:10.3389/fmicb.2019.02128. PubMed DOI PMC
Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, Meuskens I, Linke D, Drescher K, Endesfelder U, Diepold A. 2021. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat Commun 12:1625. doi:10.1038/s41467-021-21863-4. PubMed DOI PMC
Stainer DW, Scholte MJ. 1970. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 63:211–220. doi:10.1099/00221287-63-2-211. PubMed DOI
Hanawa T, Kamachi K, Yonezawa H, Fukutomi T, Kawakami H, Kamiya S. 2016. Glutamate limitation, BvgAS activation, and (p)ppGpp regulate the expression of the Bordetella pertussis type 3 secretion system. J Bacteriol 198:343–351. doi:10.1128/JB.00596-15. PubMed DOI PMC
Kurushima J, Kuwae A, Abe A. 2012. Iron starvation regulates the type III secretion system in Bordetella bronchiseptica. Microbiol Immunol 56:356–362. doi:10.1111/j.1348-0421.2012.00442.x. PubMed DOI
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318. PubMed DOI
Kabsch W. 2010. Xds. Acta Crystallogr D Biol Crystallogr 66:125–132. doi:10.1107/S0907444909047337. PubMed DOI PMC
Holubova J, Kamanova J, Jelinek J, Tomala J, Masin J, Kosova M, Stanek O, Bumba L, Michalek J, Kovar M, Sebo P. 2012. Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect Immun 80:1181–1192. doi:10.1128/IAI.05711-11. PubMed DOI PMC
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr 40:658–674. doi:10.1107/S0021889807021206. PubMed DOI PMC
Thorn A, Sheldrick GM. 2013. Extending molecular-replacement solutions with SHELXE. Acta Crystallogr D Biol Crystallogr 69:2251–2256. doi:10.1107/S0907444913027534. PubMed DOI PMC
Sammito M, Millan C, Rodriguez DD, de Ilarduya IM, Meindl K, De Marino I, Petrillo G, Buey RM, de Pereda JM, Zeth K, Sheldrick GM, Uson I. 2013. Exploiting tertiary structure through local folds for crystallographic phasing. Nat Methods 10:1099–1101. doi:10.1038/nmeth.2644. PubMed DOI
Cowtan K. 2006. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011. doi:10.1107/S0907444906022116. PubMed DOI
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367. doi:10.1107/S0907444911001314. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. doi:10.1107/S0907444910007493. PubMed DOI PMC
Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB, 3rd, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. 2018. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315. doi:10.1002/pro.3330. PubMed DOI PMC
Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. doi:10.1016/j.jmb.2007.05.022. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019. PubMed DOI PMC
The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis