Structure-Guided Design of N-Methylpropargylamino-Quinazoline Derivatives as Multipotent Agents for the Treatment of Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-24384S
Czech Science Foundation
LX22NPO510
Next Generation EU
DZRO-FVZ22-ZHN II
Long term development plan (Faculty of Military Health Sciences) Medical issues of WMD II
PubMed
37298087
PubMed Central
PMC10252614
DOI
10.3390/ijms24119124
PII: ijms24119124
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, N-methyl-d-aspartate receptor, acetylcholinesterase, enzyme inhibition, monoamine oxidase A/B, multi-target directed ligands,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- cholinesterasové inhibitory terapeutické užití MeSH
- inhibitory MAO terapeutické užití MeSH
- lidé MeSH
- monoaminoxidasa metabolismus MeSH
- neuroblastom * farmakoterapie MeSH
- racionální návrh léčiv MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- inhibitory MAO MeSH
- monoaminoxidasa MeSH
Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.
Zobrazit více v PubMed
Querfurth H.W., LaFerla F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010;362:329–344. doi: 10.1056/NEJMra0909142. PubMed DOI
Alzheimer’s Association 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2020;14:367–429. doi: 10.1002/alz.12068. DOI
Imbimbo B.P., Ippati S., Watling M. Should Drug Discovery Scientists Still Embrace the Amyloid Hypothesis for Alzheimer’s Disease or Should They Be Looking Elsewhere? Expert Opin. Drug Discov. 2020;15:1241–1251. doi: 10.1080/17460441.2020.1793755. PubMed DOI
Wang L., Bharti, Kumar R., Pavlov P.F., Winblad B. Small Molecule Therapeutics for Tauopathy in Alzheimer’s Disease: Walking on the Path of Most Resistance. Eur. J. Med. Chem. 2021;209:112915. doi: 10.1016/j.ejmech.2020.112915. PubMed DOI
Söderberg L., Johannesson M., Nygren P., Laudon H., Eriksson F., Osswald G., Möller C., Lannfelt L. Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics. 2022;20:195–206. doi: 10.1007/s13311-022-01308-6. PubMed DOI PMC
León R., Garcia A.G., Marco-Contelles J. Recent Advances in the Multitarget-Directed Ligands Approach for the Treatment of Alzheimer’s Disease. Med. Res. Rev. 2013;33:139–189. doi: 10.1002/med.20248. PubMed DOI
Proschak E., Stark H., Merk D. Polypharmacology by Design: A Medicinal Chemist’s Perspective on Multitargeting Compounds. J. Med. Chem. 2019;62:420–444. doi: 10.1021/acs.jmedchem.8b00760. PubMed DOI
Hampel H., Mesulam M.-M., Cuello A.C., Farlow M.R., Giacobini E., Grossberg G.T., Khachaturian A.S., Vergallo A., Cavedo E., Snyder P.J., et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain. 2018;141:1917–1933. doi: 10.1093/brain/awy132. PubMed DOI PMC
Rees T.M., Brimijoin S. The Role of Acetylcholinesterase in the Pathogenesis of Alzheimer’s Disease. Drugs Today. 2003;39:75–83. doi: 10.1358/dot.2003.39.1.740206. PubMed DOI
Heneka M.T., Carson M.J., El Khoury J., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5. PubMed DOI PMC
Hunt D.L., Castillo P.E. Synaptic Plasticity of NMDA Receptors: Mechanisms and Functional Implications. Curr. Opin. Neurobiol. 2012;22:496–508. doi: 10.1016/j.conb.2012.01.007. PubMed DOI PMC
Okamoto S., Pouladi M.A., Talantova M., Yao D., Xia P., Ehrnhoefer D.E., Zaidi R., Clemente A., Kaul M., Graham R.K., et al. Balance between Synaptic versus Extrasynaptic NMDA Receptor Activity Influences Inclusions and Neurotoxicity of Mutant Huntingtin. Nat. Med. 2009;15:1407–1413. doi: 10.1038/nm.2056. PubMed DOI PMC
Hanus J., Zhang H., Wang Z., Liu Q., Zhou Q., Wang S. Induction of Necrotic Cell Death by Oxidative Stress in Retinal Pigment Epithelial Cells. Cell Death Dis. 2013;4:e965. doi: 10.1038/cddis.2013.478. PubMed DOI PMC
Tackenberg C., Grinschgl S., Trutzel A., Santuccione A.C., Frey M.C., Konietzko U., Grimm J., Brandt R., Nitsch R.M. NMDA Receptor Subunit Composition Determines Beta-Amyloid-Induced Neurodegeneration and Synaptic Loss. Cell Death Dis. 2013;4:e608. doi: 10.1038/cddis.2013.129. PubMed DOI PMC
Bach A.W., Lan N.C., Johnson D.L., Abell C.W., Bembenek M.E., Kwan S.W., Seeburg P.H., Shih J.C. CDNA Cloning of Human Liver Monoamine Oxidase A and B: Molecular Basis of Differences in Enzymatic Properties. Proc. Natl. Acad. Sci. USA. 1988;85:4934–4938. doi: 10.1073/pnas.85.13.4934. PubMed DOI PMC
Ramsay R.R. Molecular Aspects of Monoamine Oxidase B. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;69:81–89. doi: 10.1016/j.pnpbp.2016.02.005. PubMed DOI
Youdim M.B.H., Edmondson D., Tipton K.F. The Therapeutic Potential of Monoamine Oxidase Inhibitors. Nat. Rev. Neurosci. 2006;7:295–309. doi: 10.1038/nrn1883. PubMed DOI
Kennedy B.P., Ziegler M.G., Alford M., Hansen L.A., Thal L.J., Masliah E. Early and Persistent Alterations in Prefrontal Cortex MAO A and B in Alzheimer’s Disease. J. Neural Transm. 2003;110:789–801. doi: 10.1007/s00702-003-0828-6. PubMed DOI
Chen Y., Bian Y., Sun Y., Kang C., Yu S., Fu T., Li W., Pei Y., Sun H. Identification of 4-Aminoquinoline Core for the Design of New Cholinesterase Inhibitors. PeerJ. 2016;4:e2140. doi: 10.7717/peerj.2140. PubMed DOI PMC
Zindo F.T., Joubert J., Malan S.F. Propargylamine as Functional Moiety in the Design of Multifunctional Drugs for Neurodegenerative Disorders: MAO Inhibition and Beyond. Future Med. Chem. 2015;7:609–629. doi: 10.4155/fmc.15.12. PubMed DOI
Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., et al. A Resurrection of 7-MEOTA: A Comparison with Tacrine. Curr. Alzheimer Res. 2013;10:893–906. doi: 10.2174/1567205011310080011. PubMed DOI
Recanatini M., Cavalli A., Belluti F., Piazzi L., Rampa A., Bisi A., Gobbi S., Valenti P., Andrisano V., Bartolini M., et al. SAR of 9-Amino-1,2,3,4-Tetrahydroacridine-Based Acetylcholinesterase Inhibitors: Synthesis, Enzyme Inhibitory Activity, QSAR, and Structure-Based CoMFA of Tacrine Analogues. J. Med. Chem. 2000;43:2007–2018. doi: 10.1021/jm990971t. PubMed DOI
Misik J., Nepovimova E., Pejchal J., Kassa J., Korabecny J., Soukup O. Cholinesterase Inhibitor 6-Chlorotacrine—In Vivo Toxicological Profile and Behavioural Effects. Curr. Alzheimer Res. 2018;15:552–560. doi: 10.2174/1567205015666171212105412. PubMed DOI
Korabecny J., Musilek K., Holas O., Binder J., Zemek F., Marek J., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and in Vitro Evaluation of N-Alkyl-7-Methoxytacrine Hydrochlorides as Potential Cholinesterase Inhibitors in Alzheimer Disease. Bioorg. Med. Chem. Lett. 2010;20:6093–6095. doi: 10.1016/j.bmcl.2010.08.044. PubMed DOI
Kaniakova M., Korabecny J., Holubova K., Kleteckova L., Chvojkova M., Hakenova K., Prchal L., Novak M., Dolezal R., Hepnarova V., et al. 7-Phenoxytacrine Is a Dually Acting Drug with Neuroprotective Efficacy In Vivo. Biochem. Pharmacol. 2021;186:114460. doi: 10.1016/j.bcp.2021.114460. PubMed DOI
Weinreb O., Amit T., Bar-Am O., Youdim M.B.H. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimer’s Disease Treatment. Curr. Drug Targets. 2012;13:483–494. doi: 10.2174/138945012799499794. PubMed DOI
Verheij M.H.P., Thompson A.J., van Muijlwijk-Koezen J.E., Lummis S.C.R., Leurs R., de Esch I.J.P. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3 Receptor Ligands. J. Med. Chem. 2012;55:8603–8614. doi: 10.1021/jm300801u. PubMed DOI PMC
Mezeiova E., Hrabinova M., Hepnarova V., Jun D., Janockova J., Muckova L., Prchal L., Kristofikova Z., Kucera T., Gorecki L., et al. Huprine Y—Tryptophan Heterodimers with Potential Implication to Alzheimer’s Disease Treatment. Bioorg. Med. Chem. Lett. 2021;43:128100. doi: 10.1016/j.bmcl.2021.128100. PubMed DOI
Dos Santos Pisoni D., Sobieski da Costa J., Gamba D., Petzhold C.L., de Amorim Borges A.C., Ceschi M.A., Lunardi P., Saraiva Gonçalves C.A. Synthesis and AChE Inhibitory Activity of New Chiral Tetrahydroacridine Analogues from Terpenic Cyclanones. Eur. J. Med. Chem. 2010;45:526–535. doi: 10.1016/j.ejmech.2009.10.039. PubMed DOI
McKenna M.T., Proctor G.R., Young L.C., Harvey A.L. Novel Tacrine Analogues for Potential Use against Alzheimer’s Disease: Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors. J. Med. Chem. 1997;40:3516–3523. doi: 10.1021/jm970150t. PubMed DOI
Daina A., Michielin O., Zoete V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC
Daina A., Michielin O., Zoete V. ILOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014;54:3284–3301. doi: 10.1021/ci500467k. PubMed DOI
Madden S., Spaldin V., Park B.K. Clinical Pharmacokinetics of Tacrine. Clin. Pharmacokinet. 1995;28:449–457. doi: 10.2165/00003088-199528060-00003. PubMed DOI
Liu M.-Y., Meng S.-N., Wu H.-Z., Wang S., Wei M.-J. Pharmacokinetics of Single-Dose and Multiple-Dose Memantine in Healthy Chinese Volunteers Using an Analytic Method of Liquid Chromatography-Tandem Mass Spectrometry. Clin. Ther. 2008;30:641–653. doi: 10.1016/j.clinthera.2008.04.005. PubMed DOI
Gupta M., Lee H.J., Barden C.J., Weaver D.F. The Blood-Brain Barrier (BBB) Score. J. Med. Chem. 2019;62:9824–9836. doi: 10.1021/acs.jmedchem.9b01220. PubMed DOI
Lipinski C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI
Martin Y.C. A Bioavailability Score. J. Med. Chem. 2005;48:3164–3170. doi: 10.1021/jm0492002. PubMed DOI
Baell J.B., Holloway G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010;53:2719–2740. doi: 10.1021/jm901137j. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Bade R., Chan H.-F., Reynisson J. Characteristics of Known Drug Space. Natural Products, Their Derivatives and Synthetic Drugs. Eur. J. Med. Chem. 2010;45:5646–5652. doi: 10.1016/j.ejmech.2010.09.018. PubMed DOI
Egan W.J., Merz K.M., Baldwin J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000;43:3867–3877. doi: 10.1021/jm000292e. PubMed DOI
Ghose A.K., Viswanadhan V.N., Wendoloski J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999;1:55–68. doi: 10.1021/cc9800071. PubMed DOI
Muegge I., Heald S.L., Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001;44:1841–1846. doi: 10.1021/jm015507e. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Sepsova V., Karasova J.Z., Korabecny J., Dolezal R., Zemek F., Bennion B.J., Kuca K. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study. Int. J. Mol. Sci. 2013;14:16882–16900. doi: 10.3390/ijms140816882. PubMed DOI PMC
Pohanka M., Karasova J.Z., Kuca K., Pikula J., Holas O., Korabecny J., Cabal J. Colorimetric Dipstick for Assay of Organophosphate Pesticides and Nerve Agents Represented by Paraoxon, Sarin and VX. Talanta. 2010;81:621–624. doi: 10.1016/j.talanta.2009.12.052. PubMed DOI
Finberg J.P.M. Inhibitors of MAO-B and COMT: Their Effects on Brain Dopamine Levels and Uses in Parkinson’s Disease. J. Neural Transm. 2019;126:433–448. doi: 10.1007/s00702-018-1952-7. PubMed DOI
Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC
Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High Throughput Artificial Membrane Permeability Assay for Blood-Brain Barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI
Mezeiova E., Janockova J., Andrys R., Soukup O., Kobrlova T., Muckova L., Pejchal J., Simunkova M., Handl J., Micankova P., et al. 2-Propargylamino-Naphthoquinone Derivatives as Multipotent Agents for the Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2021;211:113112. doi: 10.1016/j.ejmech.2020.113112. PubMed DOI
Di L., Kerns E.H., Bezar I.F., Petusky S.L., Huang Y. Comparison of Blood-Brain Barrier Permeability Assays: In Situ Brain Perfusion, MDR1-MDCKII and PAMPA-BBB. J. Pharm. Sci. 2009;98:1980–1991. doi: 10.1002/jps.21580. PubMed DOI
Wang Q., Rager J.D., Weinstein K., Kardos P.S., Dobson G.L., Li J., Hidalgo I.J. Evaluation of the MDR-MDCK Cell Line as a Permeability Screen for the Blood-Brain Barrier. Int. J. Pharm. 2005;288:349–359. doi: 10.1016/j.ijpharm.2004.10.007. PubMed DOI
Parepally J.M.R., Mandula H., Smith Q.R. Brain Uptake of Nonsteroidal Anti-Inflammatory Drugs: Ibuprofen, Flurbiprofen, and Indomethacin. Pharm. Res. 2006;23:873–881. doi: 10.1007/s11095-006-9905-5. PubMed DOI
Karabanovich G., Roh J., Soukup O., Pávková I., Pasdiorová M., Tambor V., Stolaříková J., Vejsová M., Vávrová K., Klimešová V., et al. Tetrazole Regioisomers in the Development of Nitro Group-Containing Antitubercular Agents. Med. Chem. Commun. 2015;6:174–181. doi: 10.1039/C4MD00301B. DOI
Čapek J., Roušar T. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione. Molecules. 2021;26:4710. doi: 10.3390/molecules26164710. PubMed DOI PMC
Gorecki L., Andrs M., Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers. 2021;13:795. doi: 10.3390/cancers13040795. PubMed DOI PMC
Kolcheva M., Kortus S., Krausova B.H., Barackova P., Misiachna A., Danacikova S., Kaniakova M., Hemelikova K., Hotovec M., Rehakova K., et al. Specific Pathogenic Mutations in the M3 Domain of the GluN1 Subunit Regulate the Surface Delivery and Pharmacological Sensitivity of NMDA Receptors. Neuropharmacology. 2021;189:108528. doi: 10.1016/j.neuropharm.2021.108528. PubMed DOI
Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium Salts Differing in the Length of Alkyl Side-Chain: Synthesis and Antimicrobial Activity. Bioorg. Med. Chem. Lett. 2014;24:5238–5241. doi: 10.1016/j.bmcl.2014.09.060. PubMed DOI
Riegerová P., Brejcha J., Bezděková D., Chum T., Mašínová E., Čermáková N., Ovsepian S.V., Cebecauer M., Štefl M. Expression and Localization of AβPP in SH-SY5Y Cells Depends on Differentiation State. J. Alzheimers Dis. 2021;82:485–491. doi: 10.3233/JAD-201409. PubMed DOI PMC
Čapek J., Hauschke M., Brůčková L., Roušar T. Comparison of Glutathione Levels Measured Using Optimized Monochlorobimane Assay with Those from Ortho-Phthalaldehyde Assay in Intact Cells. J. Pharmacol. Toxicol. Methods. 2017;88:40–45. doi: 10.1016/j.vascn.2017.06.001. PubMed DOI
Majtnerova P., Capek J., Petira F., Handl J., Rousar T. Quantitative Spectrofluorometric Assay Detecting Nuclear Condensation and Fragmentation in Intact Cells. Sci. Rep. 2021;11:11921. doi: 10.1038/s41598-021-91380-3. PubMed DOI PMC
Davies P., Maloney A.J. Selective Loss of Central Cholinergic Neurons in Alzheimer’s Disease. Lancet. 1976;2:1403. doi: 10.1016/S0140-6736(76)91936-X. PubMed DOI
Benek O., Korabecny J., Soukup O. A Perspective on Multi-Target Drugs for Alzheimer’s Disease. Trends Pharmacol. Sci. 2020;41:434–445. doi: 10.1016/j.tips.2020.04.008. PubMed DOI
Wang X., Sun G., Feng T., Zhang J., Huang X., Wang T., Xie Z., Chu X., Yang J., Wang H., et al. Sodium Oligomannate Therapeutically Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Res. 2019;29:787–803. doi: 10.1038/s41422-019-0216-x. PubMed DOI PMC
Löhle M., Reichmann H. Controversies in Neurology: Why Monoamine Oxidase B Inhibitors Could Be a Good Choice for the Initial Treatment of Parkinson’s Disease. BMC Neurol. 2011;11:112. doi: 10.1186/1471-2377-11-112. PubMed DOI PMC