Structure-Guided Design of N-Methylpropargylamino-Quinazoline Derivatives as Multipotent Agents for the Treatment of Alzheimer's Disease

. 2023 May 23 ; 24 (11) : . [epub] 20230523

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37298087

Grantová podpora
22-24384S Czech Science Foundation
LX22NPO510 Next Generation EU
DZRO-FVZ22-ZHN II Long term development plan (Faculty of Military Health Sciences) Medical issues of WMD II

Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.

Zobrazit více v PubMed

Querfurth H.W., LaFerla F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010;362:329–344. doi: 10.1056/NEJMra0909142. PubMed DOI

Alzheimer’s Association 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2020;14:367–429. doi: 10.1002/alz.12068. DOI

Imbimbo B.P., Ippati S., Watling M. Should Drug Discovery Scientists Still Embrace the Amyloid Hypothesis for Alzheimer’s Disease or Should They Be Looking Elsewhere? Expert Opin. Drug Discov. 2020;15:1241–1251. doi: 10.1080/17460441.2020.1793755. PubMed DOI

Wang L., Bharti, Kumar R., Pavlov P.F., Winblad B. Small Molecule Therapeutics for Tauopathy in Alzheimer’s Disease: Walking on the Path of Most Resistance. Eur. J. Med. Chem. 2021;209:112915. doi: 10.1016/j.ejmech.2020.112915. PubMed DOI

Söderberg L., Johannesson M., Nygren P., Laudon H., Eriksson F., Osswald G., Möller C., Lannfelt L. Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics. 2022;20:195–206. doi: 10.1007/s13311-022-01308-6. PubMed DOI PMC

León R., Garcia A.G., Marco-Contelles J. Recent Advances in the Multitarget-Directed Ligands Approach for the Treatment of Alzheimer’s Disease. Med. Res. Rev. 2013;33:139–189. doi: 10.1002/med.20248. PubMed DOI

Proschak E., Stark H., Merk D. Polypharmacology by Design: A Medicinal Chemist’s Perspective on Multitargeting Compounds. J. Med. Chem. 2019;62:420–444. doi: 10.1021/acs.jmedchem.8b00760. PubMed DOI

Hampel H., Mesulam M.-M., Cuello A.C., Farlow M.R., Giacobini E., Grossberg G.T., Khachaturian A.S., Vergallo A., Cavedo E., Snyder P.J., et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain. 2018;141:1917–1933. doi: 10.1093/brain/awy132. PubMed DOI PMC

Rees T.M., Brimijoin S. The Role of Acetylcholinesterase in the Pathogenesis of Alzheimer’s Disease. Drugs Today. 2003;39:75–83. doi: 10.1358/dot.2003.39.1.740206. PubMed DOI

Heneka M.T., Carson M.J., El Khoury J., Landreth G.E., Brosseron F., Feinstein D.L., Jacobs A.H., Wyss-Coray T., Vitorica J., Ransohoff R.M., et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5. PubMed DOI PMC

Hunt D.L., Castillo P.E. Synaptic Plasticity of NMDA Receptors: Mechanisms and Functional Implications. Curr. Opin. Neurobiol. 2012;22:496–508. doi: 10.1016/j.conb.2012.01.007. PubMed DOI PMC

Okamoto S., Pouladi M.A., Talantova M., Yao D., Xia P., Ehrnhoefer D.E., Zaidi R., Clemente A., Kaul M., Graham R.K., et al. Balance between Synaptic versus Extrasynaptic NMDA Receptor Activity Influences Inclusions and Neurotoxicity of Mutant Huntingtin. Nat. Med. 2009;15:1407–1413. doi: 10.1038/nm.2056. PubMed DOI PMC

Hanus J., Zhang H., Wang Z., Liu Q., Zhou Q., Wang S. Induction of Necrotic Cell Death by Oxidative Stress in Retinal Pigment Epithelial Cells. Cell Death Dis. 2013;4:e965. doi: 10.1038/cddis.2013.478. PubMed DOI PMC

Tackenberg C., Grinschgl S., Trutzel A., Santuccione A.C., Frey M.C., Konietzko U., Grimm J., Brandt R., Nitsch R.M. NMDA Receptor Subunit Composition Determines Beta-Amyloid-Induced Neurodegeneration and Synaptic Loss. Cell Death Dis. 2013;4:e608. doi: 10.1038/cddis.2013.129. PubMed DOI PMC

Bach A.W., Lan N.C., Johnson D.L., Abell C.W., Bembenek M.E., Kwan S.W., Seeburg P.H., Shih J.C. CDNA Cloning of Human Liver Monoamine Oxidase A and B: Molecular Basis of Differences in Enzymatic Properties. Proc. Natl. Acad. Sci. USA. 1988;85:4934–4938. doi: 10.1073/pnas.85.13.4934. PubMed DOI PMC

Ramsay R.R. Molecular Aspects of Monoamine Oxidase B. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;69:81–89. doi: 10.1016/j.pnpbp.2016.02.005. PubMed DOI

Youdim M.B.H., Edmondson D., Tipton K.F. The Therapeutic Potential of Monoamine Oxidase Inhibitors. Nat. Rev. Neurosci. 2006;7:295–309. doi: 10.1038/nrn1883. PubMed DOI

Kennedy B.P., Ziegler M.G., Alford M., Hansen L.A., Thal L.J., Masliah E. Early and Persistent Alterations in Prefrontal Cortex MAO A and B in Alzheimer’s Disease. J. Neural Transm. 2003;110:789–801. doi: 10.1007/s00702-003-0828-6. PubMed DOI

Chen Y., Bian Y., Sun Y., Kang C., Yu S., Fu T., Li W., Pei Y., Sun H. Identification of 4-Aminoquinoline Core for the Design of New Cholinesterase Inhibitors. PeerJ. 2016;4:e2140. doi: 10.7717/peerj.2140. PubMed DOI PMC

Zindo F.T., Joubert J., Malan S.F. Propargylamine as Functional Moiety in the Design of Multifunctional Drugs for Neurodegenerative Disorders: MAO Inhibition and Beyond. Future Med. Chem. 2015;7:609–629. doi: 10.4155/fmc.15.12. PubMed DOI

Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., et al. A Resurrection of 7-MEOTA: A Comparison with Tacrine. Curr. Alzheimer Res. 2013;10:893–906. doi: 10.2174/1567205011310080011. PubMed DOI

Recanatini M., Cavalli A., Belluti F., Piazzi L., Rampa A., Bisi A., Gobbi S., Valenti P., Andrisano V., Bartolini M., et al. SAR of 9-Amino-1,2,3,4-Tetrahydroacridine-Based Acetylcholinesterase Inhibitors: Synthesis, Enzyme Inhibitory Activity, QSAR, and Structure-Based CoMFA of Tacrine Analogues. J. Med. Chem. 2000;43:2007–2018. doi: 10.1021/jm990971t. PubMed DOI

Misik J., Nepovimova E., Pejchal J., Kassa J., Korabecny J., Soukup O. Cholinesterase Inhibitor 6-Chlorotacrine—In Vivo Toxicological Profile and Behavioural Effects. Curr. Alzheimer Res. 2018;15:552–560. doi: 10.2174/1567205015666171212105412. PubMed DOI

Korabecny J., Musilek K., Holas O., Binder J., Zemek F., Marek J., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and in Vitro Evaluation of N-Alkyl-7-Methoxytacrine Hydrochlorides as Potential Cholinesterase Inhibitors in Alzheimer Disease. Bioorg. Med. Chem. Lett. 2010;20:6093–6095. doi: 10.1016/j.bmcl.2010.08.044. PubMed DOI

Kaniakova M., Korabecny J., Holubova K., Kleteckova L., Chvojkova M., Hakenova K., Prchal L., Novak M., Dolezal R., Hepnarova V., et al. 7-Phenoxytacrine Is a Dually Acting Drug with Neuroprotective Efficacy In Vivo. Biochem. Pharmacol. 2021;186:114460. doi: 10.1016/j.bcp.2021.114460. PubMed DOI

Weinreb O., Amit T., Bar-Am O., Youdim M.B.H. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimer’s Disease Treatment. Curr. Drug Targets. 2012;13:483–494. doi: 10.2174/138945012799499794. PubMed DOI

Verheij M.H.P., Thompson A.J., van Muijlwijk-Koezen J.E., Lummis S.C.R., Leurs R., de Esch I.J.P. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3 Receptor Ligands. J. Med. Chem. 2012;55:8603–8614. doi: 10.1021/jm300801u. PubMed DOI PMC

Mezeiova E., Hrabinova M., Hepnarova V., Jun D., Janockova J., Muckova L., Prchal L., Kristofikova Z., Kucera T., Gorecki L., et al. Huprine Y—Tryptophan Heterodimers with Potential Implication to Alzheimer’s Disease Treatment. Bioorg. Med. Chem. Lett. 2021;43:128100. doi: 10.1016/j.bmcl.2021.128100. PubMed DOI

Dos Santos Pisoni D., Sobieski da Costa J., Gamba D., Petzhold C.L., de Amorim Borges A.C., Ceschi M.A., Lunardi P., Saraiva Gonçalves C.A. Synthesis and AChE Inhibitory Activity of New Chiral Tetrahydroacridine Analogues from Terpenic Cyclanones. Eur. J. Med. Chem. 2010;45:526–535. doi: 10.1016/j.ejmech.2009.10.039. PubMed DOI

McKenna M.T., Proctor G.R., Young L.C., Harvey A.L. Novel Tacrine Analogues for Potential Use against Alzheimer’s Disease: Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors. J. Med. Chem. 1997;40:3516–3523. doi: 10.1021/jm970150t. PubMed DOI

Daina A., Michielin O., Zoete V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Daina A., Michielin O., Zoete V. ILOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014;54:3284–3301. doi: 10.1021/ci500467k. PubMed DOI

Madden S., Spaldin V., Park B.K. Clinical Pharmacokinetics of Tacrine. Clin. Pharmacokinet. 1995;28:449–457. doi: 10.2165/00003088-199528060-00003. PubMed DOI

Liu M.-Y., Meng S.-N., Wu H.-Z., Wang S., Wei M.-J. Pharmacokinetics of Single-Dose and Multiple-Dose Memantine in Healthy Chinese Volunteers Using an Analytic Method of Liquid Chromatography-Tandem Mass Spectrometry. Clin. Ther. 2008;30:641–653. doi: 10.1016/j.clinthera.2008.04.005. PubMed DOI

Gupta M., Lee H.J., Barden C.J., Weaver D.F. The Blood-Brain Barrier (BBB) Score. J. Med. Chem. 2019;62:9824–9836. doi: 10.1021/acs.jmedchem.9b01220. PubMed DOI

Lipinski C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Martin Y.C. A Bioavailability Score. J. Med. Chem. 2005;48:3164–3170. doi: 10.1021/jm0492002. PubMed DOI

Baell J.B., Holloway G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010;53:2719–2740. doi: 10.1021/jm901137j. PubMed DOI

Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Bade R., Chan H.-F., Reynisson J. Characteristics of Known Drug Space. Natural Products, Their Derivatives and Synthetic Drugs. Eur. J. Med. Chem. 2010;45:5646–5652. doi: 10.1016/j.ejmech.2010.09.018. PubMed DOI

Egan W.J., Merz K.M., Baldwin J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000;43:3867–3877. doi: 10.1021/jm000292e. PubMed DOI

Ghose A.K., Viswanadhan V.N., Wendoloski J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999;1:55–68. doi: 10.1021/cc9800071. PubMed DOI

Muegge I., Heald S.L., Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001;44:1841–1846. doi: 10.1021/jm015507e. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Sepsova V., Karasova J.Z., Korabecny J., Dolezal R., Zemek F., Bennion B.J., Kuca K. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study. Int. J. Mol. Sci. 2013;14:16882–16900. doi: 10.3390/ijms140816882. PubMed DOI PMC

Pohanka M., Karasova J.Z., Kuca K., Pikula J., Holas O., Korabecny J., Cabal J. Colorimetric Dipstick for Assay of Organophosphate Pesticides and Nerve Agents Represented by Paraoxon, Sarin and VX. Talanta. 2010;81:621–624. doi: 10.1016/j.talanta.2009.12.052. PubMed DOI

Finberg J.P.M. Inhibitors of MAO-B and COMT: Their Effects on Brain Dopamine Levels and Uses in Parkinson’s Disease. J. Neural Transm. 2019;126:433–448. doi: 10.1007/s00702-018-1952-7. PubMed DOI

Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol. Rev. 2010;62:405–496. doi: 10.1124/pr.109.002451. PubMed DOI PMC

Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High Throughput Artificial Membrane Permeability Assay for Blood-Brain Barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI

Mezeiova E., Janockova J., Andrys R., Soukup O., Kobrlova T., Muckova L., Pejchal J., Simunkova M., Handl J., Micankova P., et al. 2-Propargylamino-Naphthoquinone Derivatives as Multipotent Agents for the Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2021;211:113112. doi: 10.1016/j.ejmech.2020.113112. PubMed DOI

Di L., Kerns E.H., Bezar I.F., Petusky S.L., Huang Y. Comparison of Blood-Brain Barrier Permeability Assays: In Situ Brain Perfusion, MDR1-MDCKII and PAMPA-BBB. J. Pharm. Sci. 2009;98:1980–1991. doi: 10.1002/jps.21580. PubMed DOI

Wang Q., Rager J.D., Weinstein K., Kardos P.S., Dobson G.L., Li J., Hidalgo I.J. Evaluation of the MDR-MDCK Cell Line as a Permeability Screen for the Blood-Brain Barrier. Int. J. Pharm. 2005;288:349–359. doi: 10.1016/j.ijpharm.2004.10.007. PubMed DOI

Parepally J.M.R., Mandula H., Smith Q.R. Brain Uptake of Nonsteroidal Anti-Inflammatory Drugs: Ibuprofen, Flurbiprofen, and Indomethacin. Pharm. Res. 2006;23:873–881. doi: 10.1007/s11095-006-9905-5. PubMed DOI

Karabanovich G., Roh J., Soukup O., Pávková I., Pasdiorová M., Tambor V., Stolaříková J., Vejsová M., Vávrová K., Klimešová V., et al. Tetrazole Regioisomers in the Development of Nitro Group-Containing Antitubercular Agents. Med. Chem. Commun. 2015;6:174–181. doi: 10.1039/C4MD00301B. DOI

Čapek J., Roušar T. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione. Molecules. 2021;26:4710. doi: 10.3390/molecules26164710. PubMed DOI PMC

Gorecki L., Andrs M., Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers. 2021;13:795. doi: 10.3390/cancers13040795. PubMed DOI PMC

Kolcheva M., Kortus S., Krausova B.H., Barackova P., Misiachna A., Danacikova S., Kaniakova M., Hemelikova K., Hotovec M., Rehakova K., et al. Specific Pathogenic Mutations in the M3 Domain of the GluN1 Subunit Regulate the Surface Delivery and Pharmacological Sensitivity of NMDA Receptors. Neuropharmacology. 2021;189:108528. doi: 10.1016/j.neuropharm.2021.108528. PubMed DOI

Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium Salts Differing in the Length of Alkyl Side-Chain: Synthesis and Antimicrobial Activity. Bioorg. Med. Chem. Lett. 2014;24:5238–5241. doi: 10.1016/j.bmcl.2014.09.060. PubMed DOI

Riegerová P., Brejcha J., Bezděková D., Chum T., Mašínová E., Čermáková N., Ovsepian S.V., Cebecauer M., Štefl M. Expression and Localization of AβPP in SH-SY5Y Cells Depends on Differentiation State. J. Alzheimers Dis. 2021;82:485–491. doi: 10.3233/JAD-201409. PubMed DOI PMC

Čapek J., Hauschke M., Brůčková L., Roušar T. Comparison of Glutathione Levels Measured Using Optimized Monochlorobimane Assay with Those from Ortho-Phthalaldehyde Assay in Intact Cells. J. Pharmacol. Toxicol. Methods. 2017;88:40–45. doi: 10.1016/j.vascn.2017.06.001. PubMed DOI

Majtnerova P., Capek J., Petira F., Handl J., Rousar T. Quantitative Spectrofluorometric Assay Detecting Nuclear Condensation and Fragmentation in Intact Cells. Sci. Rep. 2021;11:11921. doi: 10.1038/s41598-021-91380-3. PubMed DOI PMC

Davies P., Maloney A.J. Selective Loss of Central Cholinergic Neurons in Alzheimer’s Disease. Lancet. 1976;2:1403. doi: 10.1016/S0140-6736(76)91936-X. PubMed DOI

Benek O., Korabecny J., Soukup O. A Perspective on Multi-Target Drugs for Alzheimer’s Disease. Trends Pharmacol. Sci. 2020;41:434–445. doi: 10.1016/j.tips.2020.04.008. PubMed DOI

Wang X., Sun G., Feng T., Zhang J., Huang X., Wang T., Xie Z., Chu X., Yang J., Wang H., et al. Sodium Oligomannate Therapeutically Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Res. 2019;29:787–803. doi: 10.1038/s41422-019-0216-x. PubMed DOI PMC

Löhle M., Reichmann H. Controversies in Neurology: Why Monoamine Oxidase B Inhibitors Could Be a Good Choice for the Initial Treatment of Parkinson’s Disease. BMC Neurol. 2011;11:112. doi: 10.1186/1471-2377-11-112. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...