Expression and Localization of AβPP in SH-SY5Y Cells Depends on Differentiation State
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu dopisy
PubMed
34057078
PubMed Central
PMC8385523
DOI
10.3233/jad-201409
PII: JAD201409
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, AβPP, SH-SY5Y, differentiation, super-resolution microscopy,
- MeSH
- Alzheimerova nemoc metabolismus MeSH
- amyloidový prekurzorový protein beta metabolismus MeSH
- biologické modely MeSH
- buněčná diferenciace fyziologie MeSH
- intravitální mikroskopie metody MeSH
- lidé MeSH
- mozkový neurotrofický faktor * metabolismus farmakologie MeSH
- nádorové buněčné linie MeSH
- neuroblastom MeSH
- neurony fyziologie MeSH
- oxidační stres MeSH
- proteolýza MeSH
- tretinoin * metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- Názvy látek
- amyloidový prekurzorový protein beta MeSH
- mozkový neurotrofický faktor * MeSH
- tretinoin * MeSH
Neuroblastoma cell line SH-SY5Y, due to its capacity to differentiate into neurons, easy handling, and low cost, is a common experimental model to study molecular events leading to Alzheimer's disease (AD). However, it is prevalently used in its undifferentiated state, which does not resemble neurons affected by the disease. Here, we show that the expression and localization of amyloid-β protein precursor (AβPP), one of the key molecules involved in AD pathogenesis, is dramatically altered in SH-SY5Y cells fully differentiated by combined treatment with retinoic acid and BDNF. We show that insufficient differentiation of SH-SY5Y cells results in AβPP mislocalization.
Zobrazit více v PubMed
Wortmann M (2012) Dementia: A global health priority - Highlights from an ADI and World Health Organization report. Alzheimer’s Res Ther 4, 4–6. PubMed PMC
Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107, 4335–4340. PubMed PMC
Yusuf M, Leung K, Morris KJ, Volpi EV (2013) Comprehensive cytogenomic profile of the} neuronal model SH-SY5Y. Neurogenetics 14, 63–70. PubMed PMC
Krishtal J, Metsla K, Bragina O, Tõugu V, Palumaa P (2019) Toxicity of amyloid-β peptides varies depending on differentiation route of SH-SY5Y cells. J Alzheimers Dis 71, 879–887. PubMed
Chen J, Chattopadhyay B, Venkatakrishnan G, Ross AH (1990) Nerve growth factor-induced differentiation of human neuroblastoma and neuroepithelioma cell lines. Cell Growth Differ 1, 79–85. PubMed
Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Ceña V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75, 991–1003. PubMed
Kume T, Kawato Y, Osakada F, Izumi Y, Katsuki H, Nakagawa T, Kaneko S, Niidome T, Takada-Takatori Y, Akaike A (2008) Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype. Neurosci Lett 443, 199–203. PubMed
Påhlman S, Odelstad L, Larsson E, Grotte G, Nilsson K (1981) Phenotypic changes of human neuroblastoma cells in culture induced by 12-O-tetradecanoyl-phorbol-13-acetate. Int J Cancer 28, 583–589. PubMed
Paik S, Somvanshi RK, Kumar U (2019) Somatostatin-mediated changes in microtubule-associated proteins and retinoic acid-induced neurite outgrowth in SH-SY5Y cells. J Mol Neurosci 68, 120–134. PubMed
Presgraves SP, Ahmed T, Borwege S, Joyce JN (2003) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5, 579–598. PubMed
Hromadkova L, Bezdekova D, Pala J, Schedin-Weiss S, Tjernberg LO, Hoschl C, Ovsepian SV (2020) Brain-derived neurotrophic factor (BDNF) promotes molecular polarization and differentiation of immature neuroblastoma cells into definitive neurons. Biochim Biophys Acta Mol Cell Res 1867, 118737. PubMed
Cheung Y, Lau WK, Yu M, Lai CS, Yeung S, So K, Chang RC (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as} model in neurotoxicity research. Neurotoxicology 30, 127–135. PubMed
Goldie BJ, Barnett MM, Cairns MJ (2014) BDNF and the maturation of posttranscriptional regulatory networks in human SH-SY5Y neuroblast differentiation. Front Cell Neurosci 8, 325. PubMed PMC
Forster JI, Köglsberger S, Trefois C, Boyd O, Baumuratov AS, Buck L, Balling R, Antony PMA (2016) Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. J Biomol Screen 21, 496–509. PubMed PMC
Brion JP (2006) Immunological demonstration of tau protein in neurofibrillary tangles of Alzheimer’s disease. J Alzheimers Dis 9, 177–185. PubMed
Glenner G and Wong WC (1984) Alzheimer’s disease and Down’s syndrome: Sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122, 1131–1135. PubMed
Gupta S, Banerjee P, Laferla FM, Selkoe DJ (2010) Alzheimer’s disease: Genes, proteins, and therapy. Physiol Rev 81, 741–766. PubMed
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: An open-source platform for biological-image analysis. Nat Methods 9, 676–682. PubMed PMC
Hüpfel M, Yu. Kobitski A, Zhang W, Nienhaus GU (2021) Wavelet-based background and noise subtraction for fluorescence microscopy images. Biomed Opt Express 12, 969. PubMed PMC
Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, Pasquier F, Galimberti D, Scarpini E, Mann D, Lendon C, Campion D, Amouyel P, Davies P, Foskett JK, Campagne F, Marambaud P (2008) A polymorphism in CALHM1 influences Ca2+homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell 133, 1149–1161. PubMed PMC
Nigam SM, Xu S, Kritikou JS, Marosi K, Brodin L, Mattson MP (2017) Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. J Neurochem 142, 286–296. PubMed PMC
Dunning CJR, Black HL, Andrews KL, Davenport EC, Conboy M, Chawla S, Dowle AA, Ashford D, Thomas JR, Evans GJO (2016) Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein. J Neurochem 137, 518–527. PubMed PMC
LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 8, 499–509. PubMed
Pavlov PF, Wiehager B, Sakai J, Frykman S, Behbahani H, Winblad B, Ankarcrona M (2011) Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 25, 78–88. PubMed
Edwards MA, Loxley RA, Williams AJ, Connor M, Phillips JK (2007) Lack of functional expression of NMDA receptors in PC12 cells. Neurotoxicology 28, 876–885. PubMed
Heusinkveld HJ, Westerink RHS (2017) Comparison of different in vitro cell models for the assessment of pesticide-induced dopaminergic neurotoxicity. Toxicol Vitr 45, 81–88. PubMed
Popova D, Karlsson J, Jacobsson SOP (2017) Comparison of neurons derived from mouse P19, rat PC12 and human SH-SY5Y cells in the assessment of chemical- and toxin-induced neurotoxicity. BMC Pharmacol Toxicol 18, 42. PubMed PMC
Datta PK (2013) Neuronal cell culture. Neuronal Cell Cult Methods Protoc 1078, 35–44. PubMed PMC
Xicoy H, Wieringa B, Martens GJM (2017) The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol Neurodegener 12, 10. PubMed PMC
Kaplan DR, Matsumoto K, Lucarelli E, Thielet CJ (1993) Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Neuron 11, 321–331. PubMed
Chen Q, Zhou Z, Zhang L, Xu S, Chen C, Yu Z (2014) The cellular distribution and Ser262 phosphorylation of tau protein are regulated by BDNF . PLoS One 9, e91793. PubMed PMC