Anti-N-methyl D-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune disorder characterized by IgG antibodies targeting NMDAR. The prevalence is remarkably higher in women and some develop the condition during pregnancy. While immunotherapies have shown good outcomes for pregnant mothers and their infants, the impact on early neurodevelopment remains elusive. This study investigates the effects of anti-NMDAR antibody on the development of primary cortical cultures. Anti-NMDAR antibody was administered to the cultures at day in vitro 5 for the following 5 days to assess dendritic branching and arbor complexity, and at day in vitro 14 for measuring the expression of brain-derived neurotrophic factor (BDNF) and synaptic proteins. Immature cultured neurons treated with anti-NMDAR antibody exhibited impaired dendritic branching and arbor complexity. Interestingly, BDNF expression was unaffected in mature neurons. Additionally, GluN1 expression, a mandatory NMDAR subunit, was significantly reduced, while no significant alterations were observed in PSD-95, gephyrin and synaptophysin expression. These findings shed light on the structural and synaptic impacts of anti-NMDAR antibody on immature neurons, providing evidence for their consequences in early neuronal development.
- MeSH
- dendrity * účinky léků metabolismus MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- membránové proteiny metabolismus imunologie MeSH
- mozkový neurotrofický faktor * metabolismus MeSH
- neurony * metabolismus účinky léků MeSH
- protein PSD-95 metabolismus MeSH
- proteiny nervové tkáně imunologie metabolismus MeSH
- receptory N-methyl-D-aspartátu * imunologie MeSH
- synaptofysin metabolismus MeSH
- transportní proteiny MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: To investigate the therapeutic potential of visual stimulation (VS) and BDNF in murine experimental autoimmune uveoretinitis (EAU). MAIN METHODS: Mice were immunized by subcutaneous injection of interphotoreceptor retinoid-binding protein in Freund's complete adjuvant and intravenous injection of pertussis toxin, and were then exposed to high-contrast VS 12 h/day (days 1-14 post-immunization). EAU severity was assessed by examining clinical score, visual acuity, inflammatory markers, and immune cells in the retina. The transcriptome of activated retinal cells was determined by RNA-seq using RNA immunoprecipitated in complex with phosphorylated ribosomal protein S6. The retinal levels of protein products of relevant upregulated genes were quantified. The effect of BDNF on EAU was tested in unstimulated mice by its daily topical ocular administration (days 8-14 post-immunization). KEY FINDINGS: VS attenuated EAU development and decreased the expression of pro-inflammatory cytokines/chemokines and numbers of immune cells in the retina (n = 10-20 eyes/group for each analysis). In activated retinal cells of control mice (n = 30 eyes/group), VS upregulated genes encoding immunomodulatory neuropeptides, of which BDNF and vasoactive intestinal peptide (VIP) also showed increased mRNA and protein levels in the retina of VS-treated EAU mice (n = 6-10 eyes/group for each analysis). In unstimulated EAU mice, BDNF treatment mimicked the protective effects of VS by modulating the inflammatory and stem cell properties of Müller cells (n = 5 eyes/group for each analysis). SIGNIFICANCE: VS effectively suppresses EAU, at least through enhancing retinal levels of anti-inflammatory and neuroprotective factors, VIP and BDNF. Our findings also suggest BDNF as a promising therapeutic agent for uveitis treatment.
- MeSH
- autoimunitní nemoci * imunologie metabolismus MeSH
- cytokiny metabolismus MeSH
- modely nemocí na zvířatech MeSH
- mozkový neurotrofický faktor * metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- retina metabolismus účinky léků MeSH
- retinitida * farmakoterapie prevence a kontrola imunologie MeSH
- uveitida * metabolismus farmakoterapie imunologie MeSH
- vazoaktivní intestinální peptid farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: By measuring the extent of cytokines secreted by human dental pulp stem cells (hDPSCs) from passages 2 through 10, the optimal passage of hDPSCs was determined. This offers a potential theoretical basis for the treatment of neurological disorders. METHOD: After isolation and culture of hDPSCs from human teeth, the morphological features of the cells were observed under an inverted microscope. hDPSCs were identified by their immunophenotypes and their multiple differentiation capability. Cytokine concentrations secreted in the supernatants at passages 2-10 were detected by ELISA. RESULTS: hDPSCs were viewed as fusiform or polygonal in shape, with a bulging cell body, homogenized cytoplasm, and a clear nucleus. Moreover, they could differentiate into neuroblasts in vitro. hDPSCs at passage 3 were positive for CD29 (91.5%), CD73 (94.8%) and CD90 (96.7%), but negative for the hematopoietic markers CD34 (0.13%). ELISA results showed that hDPSCs at passage 3 had the highest secretion levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), with the highest secretion level of Neurotrophin-3 (NT-3) being at passage 2. CONCLUSION: hDPSCs have steady biological features of stem cells and exhibit optimal proliferation potential. hDPSCs at different passages have different capacities in the secretion of VEGF, BDNF, NGF, and NT-3. In conclusion cytokines secreted by hDPSCs may prove to be appropriate in the treatment of neurological diseases.
- MeSH
- buněčná diferenciace * MeSH
- cytokiny * metabolismus MeSH
- kmenové buňky * metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- nervový růstový faktor metabolismus MeSH
- neurotrofin 3 metabolismus MeSH
- proliferace buněk MeSH
- vaskulární endoteliální růstový faktor A metabolismus MeSH
- zubní dřeň cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
High-contrast visual stimulation promotes retinal regeneration and visual function, but the underlying mechanism is not fully understood. Here, we hypothesized that Müller cells (MCs), which express neurotrophins such as brain-derived neurotrophic factor (BDNF), could be key players in this retinal plasticity process. This hypothesis was tested by conducting in vivo and in vitro high-contrast stimulation of adult mice and MCs. Following stimulation, we examined the expression of BDNF and its inducible factor, VGF, in the retina and MCs. We also investigated the alterations in the expression of VGF, nuclear factor kappa B (NF-κB) and pro-inflammatory mediators in MCs, as well as their capacity to proliferate and develop a neurogenic or reactive gliosis phenotype after high-contrast stimulation and treatment with BDNF. Our results showed that high-contrast stimulation upregulated BDNF levels in MCs in vivo and in vitro. The additional BDNF treatment significantly augmented VGF production in MCs and their neuroprotective features, as evidenced by increased MC proliferation, neurodifferentiation, and decreased expression of the pro-inflammatory factors and the reactive gliosis marker GFAP. These results demonstrate that high-contrast stimulation activates the neurotrophic and neuroprotective properties of MCs, suggesting their possible direct involvement in retinal neuronal survival and improved functional outcomes in response to visual stimulation.
- MeSH
- ependymální buňky * metabolismus MeSH
- fenotyp MeSH
- glióza metabolismus MeSH
- mozkový neurotrofický faktor * metabolismus MeSH
- myši MeSH
- retina metabolismus MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Exercise therapy represents an important tool for the treatment of many neurological diseases, including cerebellar degenerations. In mouse models, exercise may decelerate the progression of gradual cerebellar degeneration via potent activation of neuroprotective pathways. However, whether exercise could also improve the condition in mice with already heavily damaged cerebella remains an open question. Here we aimed to explore this possibility, employing a mouse model with dramatic early-onset cerebellar degeneration, the Lurcher mice. The potential of forced physical activity and environmental enrichment (with the possibility of voluntary running) for improvement of behaviour and neuroplasticity was evaluated by a series of behavioural tests, measuring BDNF levels and using stereological histology techniques. Using advanced statistical analysis, we showed that while forced physical activity improved motor learning by ∼26 % in Lurcher mice and boosted BDNF levels in the diseased cerebellum by 57 %, an enriched environment partially alleviated some behavioural deficits related to behavioural disinhibition. Specifically, Lurcher mice exposed to the enriched environment evinced reduced open arm exploration in elevated plus maze test by 18 % and increased immobility almost 9-fold in the forced swim test. However, we must conclude that the overall beneficial effects were very mild and much less clear, compared to previously demonstrated effects in slowly-progressing cerebellar degenerations.
- MeSH
- bydlení zvířat * MeSH
- chování zvířat fyziologie MeSH
- hra a hračky MeSH
- kondiční příprava zvířat fyziologie MeSH
- modely nemocí na zvířatech MeSH
- mozeček * metabolismus patologie MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- myši - mutanty neurologické MeSH
- myši MeSH
- neurodegenerativní nemoci * metabolismus patologie rehabilitace MeSH
- terapie cvičením MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Neuroblastoma cell line SH-SY5Y, due to its capacity to differentiate into neurons, easy handling, and low cost, is a common experimental model to study molecular events leading to Alzheimer's disease (AD). However, it is prevalently used in its undifferentiated state, which does not resemble neurons affected by the disease. Here, we show that the expression and localization of amyloid-β protein precursor (AβPP), one of the key molecules involved in AD pathogenesis, is dramatically altered in SH-SY5Y cells fully differentiated by combined treatment with retinoic acid and BDNF. We show that insufficient differentiation of SH-SY5Y cells results in AβPP mislocalization.
- MeSH
- Alzheimerova nemoc metabolismus MeSH
- amyloidový prekurzorový protein beta metabolismus MeSH
- biologické modely MeSH
- buněčná diferenciace fyziologie MeSH
- intravitální mikroskopie metody MeSH
- lidé MeSH
- mozkový neurotrofický faktor * metabolismus farmakologie MeSH
- nádorové buněčné linie MeSH
- neuroblastom MeSH
- neurony fyziologie MeSH
- oxidační stres MeSH
- proteolýza MeSH
- tretinoin * metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
Social defeat stress affects behavior and changes the expression of the genes underlying neuronal plasticity in the brain. The circadian clock regulates most neuronal processes in the brain, which results in daily variations of complex behavior, and any disturbance in circadian clock oscillations increases the risk of mood and cognitive disbalance. In this study, we assessed the effect of acute and repeated social defeat stress on Per2 and Nr1d1 expression in prefrontal cortexes, hippocampi, pineal glands, olfactory bulbs, cerebella, and pituitary glands. We also evaluated the effect of our experimental setting on levels of Bdnf and plasma corticosterone, two markers widely used to asses the impact of stress on mammalian physiology. Our data show that single and repeated social defeat stress upregulates the expression of both clock genes and Bdnf in all brain structures, and corticosterone in the blood. While the general pattern of Bdnf upregulation suggests higher sensitivity in the intruder group, the clock genes are induced more significantly in residents, especially by repeated stress sessions. Our work thus suggests that the model of stress-induced anxiety and depression should consider a group of residents because, for some parameters, they may respond more distinctively than intruders.LAY SUMMARYThe resident/intruder experimental paradigm affects the expression of clock genes Per2, Nr1d1and Bdnf in the brain structures and plasma corticosterone level. The induction of clock genes is evident in both experimental groups; however, it is more marked in residents. Together with the significant increase in Bdnf levels in the majority of brain structures and plasma corticosterone in residents, our data suggest that in the model of social defeat stress, the utility of an experimental group of residents could be contributive.
- MeSH
- kortikosteron MeSH
- mozek metabolismus MeSH
- mozkový neurotrofický faktor * genetika metabolismus MeSH
- potkani Wistar MeSH
- proteiny CLOCK * genetika metabolismus MeSH
- psychický stres * genetika MeSH
- sociální chování MeSH
- sociální porážka MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The aging of human populations, including those in Europe, is an indisputable fact. The challenge for the future is not simply prolonging human life at any cost or by any means but rather extending self-sufficiency and quality of life. Even in the most advanced societies, the eternal questions remain. Who will take care of the older generations? Will adult children's own circumstances be sufficient to support family members as they age? For a range of complex reasons, including socioeconomic conditions, adult children are often unable or unwilling to assume responsibility for the care of older family members. For this reason, it is imperative that aging adults maintain their independence and self-care for as long as possible. Movement is an important part of self-sufficiency. Moreover, movement has been shown to improve patients' clinical status. At a time when the coronavirus pandemic is disrupting the world, older people are among the most vulnerable. Our paper explores current knowledge and offers insights into the significant benefits of movement for the elderly, including improved immunity. We discuss the biochemical processes of aging and the counteractive effects of exercise and endogenous substances, such as vitamin D.
- MeSH
- COVID-19 imunologie patologie virologie MeSH
- cvičení * MeSH
- lidé MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- obezita patologie MeSH
- psychický stres MeSH
- sarkopenie patologie MeSH
- SARS-CoV-2 izolace a purifikace MeSH
- stárnutí * MeSH
- vitamin D aplikace a dávkování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Throughout development, neuronal progenitors undergo complex transformation into polarized nerve cells, warranting the directional flow of information in the neural grid. The majority of neuronal polarization studies have been carried out on rodent-derived precursor cells, programmed to develop into neurons. Unlike rodent neuronal cells, SH-SY5Y cells derived from human bone marrow present a sub-clone of neuroblastoma line, with their transformation into neuron-like cells showing a range of highly instructive neurobiological characteristics. We applied two-step retinoic acid (RA) and brain-derived neurotrophic factor (BDNF) protocol to monitor the conversion of undifferentiated SH-SY5Y into neuron-like cells with distinctly polarized axon-dendritic morphology and formation of bona fide synaptic connections. We show that BDNF is a key driver and regulator of the expression of axonal marker tau and dendritic microtubule-associated protein-2 (MAP2), with their sorting to distinct cellular compartments. Using selective kinase inhibitors downregulating BDNF-TrkB signaling, we demonstrate that constitutive activation of TrkB receptor is essential for the maintenance of established polarization morphology. Importantly, the proximity ligation assay applied in our preparation demonstrates that differentiating neuron-like cells develop elaborate synaptic connections enriched with hallmark pre- and postsynaptic proteins. Described herein findings highlight several fundamental processes related to neuronal polarization and synaptogenesis in human-derived cells, which are of major relevance to neurobiology and translational neuroscience.
- MeSH
- biologické markery MeSH
- buněčná diferenciace genetika MeSH
- lidé MeSH
- mozkový neurotrofický faktor genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- neuroblastom genetika metabolismus patologie MeSH
- neurogeneze genetika MeSH
- neurony cytologie metabolismus MeSH
- reaktivní formy kyslíku MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study aimed to investigate the effects of chronic restraint stress (CRS) on the protein levels of dopamine-β-hydroxylase (DBH), noradrenaline transporter (NET), vesicular monoamine transporter 2 (VMAT2) and brain-derived neurotrophic factor (BDNF), as well as the concentration of noradrenaline (NA) in the rat hippocampus. The investigated parameters were quantified by Western blot analyses and ELISA kits. We found that CRS increased the protein levels of DBH by 30 %, VMAT2 by 11 %, BDNF by 11 % and the concentration of NA by 104 %, but decreased the protein levels of NET by 16 % in the hippocampus of chronically stressed rats. The molecular mechanisms by which CRS increased the hippocampal NA level are an important adaptive phenomenon of the noradrenergic system in the stress condition.
- MeSH
- dopamin-beta-hydroxylasa metabolismus MeSH
- fyzické omezení MeSH
- hipokampus metabolismus MeSH
- krysa rodu rattus MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- noradrenalin metabolismus MeSH
- proteiny přenášející noradrenalin přes plazmatickou membránu metabolismus MeSH
- psychický stres metabolismus MeSH
- vezikulární transportní proteiny monoaminů metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH