Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34443297
PubMed Central
PMC8401563
DOI
10.3390/molecules26164710
PII: molecules26164710
Knihovny.cz E-zdroje
- Klíčová slova
- cell injury, fluorescence probes, glutathione, nanotoxicity, oxidative stress, reactive oxygen species,
- MeSH
- buňky účinky léků metabolismus MeSH
- glutathion metabolismus MeSH
- lidé MeSH
- nanostruktury toxicita MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- glutathion MeSH
- reaktivní formy kyslíku MeSH
The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.
Zobrazit více v PubMed
Hayyan M., Hashim M.A., AlNashef I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016;116:3029–3085. doi: 10.1021/acs.chemrev.5b00407. PubMed DOI
Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI
Juan C.A., Perez de la Lastra J.M., Plou F.J., Perez-Lebena E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021;22:4642. doi: 10.3390/ijms22094642. PubMed DOI PMC
Simon H.U., Haj-Yehia A., Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5:415–418. doi: 10.1023/A:1009616228304. PubMed DOI
Wagner H., Cheng J.W., Ko E.Y. Role of reactive oxygen species in male infertility: An updated review of literature. Arab. J. Urol. 2018;16:35–43. doi: 10.1016/j.aju.2017.11.001. PubMed DOI PMC
Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12:913–922. doi: 10.1007/s10495-007-0756-2. PubMed DOI
Zhao R.Z., Jiang S., Zhang L., Yu Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review) Int. J. Mol. Med. 2019;44:3–15. doi: 10.3892/ijmm.2019.4188. PubMed DOI PMC
Suski J., Lebiedzinska M., Bonora M., Pinton P., Duszynski J., Wieckowski M.R. Relation Between Mitochondrial Membrane Potential and ROS Formation. Methods Mol. Biol. 2018;1782:357–381. PubMed
Mazat J.P., Devin A., Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol. Life Sci. 2020;77:455–465. doi: 10.1007/s00018-019-03381-1. PubMed DOI PMC
Parey K., Wirth C., Vonck J., Zickermann V. Respiratory complex I—structure, mechanism and evolution. Curr. Opin. Struct. Biol. 2020;63:1–9. doi: 10.1016/j.sbi.2020.01.004. PubMed DOI
Husen P., Nielsen C., Martino C.F., Solov’yov I.A. Molecular Oxygen Binding in the Mitochondrial Electron Transfer Flavoprotein. J. Chem. Inf. Model. 2019;59:4868–4879. doi: 10.1021/acs.jcim.9b00702. PubMed DOI
Mailloux R.J. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants. 2020;9:472. doi: 10.3390/antiox9060472. PubMed DOI PMC
Papa S., Skulachev V.P. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell BioChem. 1997;174:305–319. doi: 10.1023/A:1006873518427. PubMed DOI
Ventura J.J., Cogswell P., Flavell R.A., Baldwin A.S., Jr., Davis R.J. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev. 2004;18:2905–2915. doi: 10.1101/gad.1223004. PubMed DOI PMC
Zhang M., Harashima N., Moritani T., Huang W., Harada M. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells. PLoS ONE. 2015;10:e0127386. doi: 10.1371/journal.pone.0127386. PubMed DOI PMC
Yang J., Zhao X., Tang M., Li L., Lei Y., Cheng P., Guo W., Zheng Y., Wang W., Luo N., et al. The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells. Oncotarget. 2017;8:23492–23506. doi: 10.18632/oncotarget.15626. PubMed DOI PMC
Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44:479–496. doi: 10.3109/10715761003667554. PubMed DOI PMC
Storz P. Reactive oxygen species in tumor progression. Front. BioSci. 2005;10:1881–1896. doi: 10.2741/1667. PubMed DOI
Zhou B., Guo X., Yang N., Huang Z., Huang L., Fang Z., Zhang C., Li L., Yu C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. J. Mater. Chem. B. 2021;9:5583–5598. doi: 10.1039/D1TB00181G. PubMed DOI
Sakr T.M., Korany M., Katti K.V. Selenium nanomaterials in biomedicine—An overview of new opportunities in nanomedicine of selenium. J. Drug Deliv. Sci. Technol. 2018;46:223–233. doi: 10.1016/j.jddst.2018.05.023. DOI
Mehlenbacher R.D., Kolbl R., Lay A., Dionne J.A. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 2017;3:1–17. doi: 10.1038/natrevmats.2017.80. DOI
Musial J., Krakowiak R., Mlynarczyk D.T., Goslinski T., Stanisz B.J. Titanium Dioxide Nanoparticles in Food and Personal Care Products-What Do We Know about Their Safety? Nanomaterials. 2020;10:1110. doi: 10.3390/nano10061110. PubMed DOI PMC
Holmila R.J., Vance S.A., King S.B., Tsang A.W., Singh R., Furdui C.M. Silver Nanoparticles Induce Mitochondrial Protein Oxidation in Lung Cells Impacting Cell Cycle and Proliferation. Antioxidants. 2019;8:552. doi: 10.3390/antiox8110552. PubMed DOI PMC
Drasler B., Sayre P., Steinhäuser K.G., Petri-Fink A., Rothen-Rutishauser B. In vitro approaches to assess the hazard of nanomaterials. NanoImpact. 2017;8:99–116. doi: 10.1016/j.impact.2017.08.002. DOI
Yin J.J., Liu J., Ehrenshaft M., Roberts J.E., Fu P.P., Mason R.P., Zhao B. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes--generation of reactive oxygen species and cell damage. Toxicol. Appl. Pharmacol. 2012;263:81–88. doi: 10.1016/j.taap.2012.06.001. PubMed DOI PMC
Ray P.C., Yu H.T., Fu P.P. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ. Sci. Health C. 2009;27:1–35. doi: 10.1080/10590500802708267. PubMed DOI PMC
Daimon T., Nosaka Y. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J. Phys. Chem. C. 2007;111:4420–4424. doi: 10.1021/jp070028y. DOI
Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015;30:11–26. doi: 10.1007/s12291-014-0446-0. PubMed DOI PMC
Yang H., Liu C., Yang D., Zhang H., Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 2009;29:69–78. doi: 10.1002/jat.1385. PubMed DOI
He X., Sanders S., Aker W.G., Lin Y., Douglas J., Hwang H.M. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO2 nanoparticles in vitro. J. Environ. Sci. 2016;42:50–60. doi: 10.1016/j.jes.2015.05.028. PubMed DOI
Zhang J., Wang B., Wang H., He H., Wu Q., Qin X., Yang X., Chen L., Xu G., Yuan Z., et al. Disruption of the superoxide anions-mitophagy regulation axis mediates copper oxide nanoparticles-induced vascular endothelial cell death. Free Radic. Biol. Med. 2018;129:268–278. doi: 10.1016/j.freeradbiomed.2018.09.032. PubMed DOI
Onodera A., Nishiumi F., Kakiguchi K., Tanaka A., Tanabe N., Honma A., Yayama K., Yoshioka Y., Nakahira K., Yonemura S., et al. Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicol. Rep. 2015;2:574–579. doi: 10.1016/j.toxrep.2015.03.004. PubMed DOI PMC
Ahamed M., Akhtar M.J., Raja M., Ahmad I., Siddiqui M.K., AlSalhi M.S., Alrokayan S.A. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: Role of oxidative stress. Nanomedicine. 2011;7:904–913. doi: 10.1016/j.nano.2011.04.011. PubMed DOI
Jimenez-Relinque E., Castellote M. Hydroxyl radical and free and shallowly trapped electron generation and electron/hole recombination rates in TiO2 photocatalysis using different combinations of anatase and rutile. Appl. Catal. A Gen. 2018;565:20–25. doi: 10.1016/j.apcata.2018.07.045. DOI
Thit A., Selck H., Bjerregaard H.F. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells. Toxicol. In Vitro. 2015;29:1053–1059. doi: 10.1016/j.tiv.2015.03.020. PubMed DOI
Thubagere A., Reinhard B.M. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: Insights from a human intestinal epithelium in vitro model. ACS Nano. 2010;4:3611–3622. doi: 10.1021/nn100389a. PubMed DOI
Gao W., Xu K., Ji L., Tang B. Effect of gold nanoparticles on glutathione depletion-induced hydrogen peroxide generation and apoptosis in HL7702 cells. Toxicol. Lett. 2011;205:86–95. doi: 10.1016/j.toxlet.2011.05.1018. PubMed DOI
Wang J.X., Fan Y.B., Gao Y., Hu Q.H., Wang T.C. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials. 2009;30:4590–4600. doi: 10.1016/j.biomaterials.2009.05.008. PubMed DOI
Guo D., Bi H., Liu B., Wu Q., Wang D., Cui Y. Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol. In Vitro. 2013;27:731–738. doi: 10.1016/j.tiv.2012.12.001. PubMed DOI
Yang E.J., Kim S., Kim J.S., Choi I.H. Inflammasome formation and IL-1beta release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012;33:6858–6867. doi: 10.1016/j.biomaterials.2012.06.016. PubMed DOI
Hirakawa K., Hirano T. Singlet oxygen generation photocatalyzed by TiO2 particles and its contribution to biomolecule damage. Chem. Lett. 2006;35:832–833. doi: 10.1246/cl.2006.832. DOI
Lee S.H., Jun B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019;20:865. doi: 10.3390/ijms20040865. PubMed DOI PMC
Zhou Z., Song J., Tian R., Yang Z., Yu G., Lin L., Zhang G., Fan W., Zhang F., Niu G., et al. Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angew. Chem. Int. Ed. Engl. 2017;56:6492–6496. doi: 10.1002/anie.201701181. PubMed DOI PMC
Abdal Dayem A., Hossain M.K., Lee S.B., Kim K., Saha S.K., Yang G.M., Choi H.Y., Cho S.G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017;18:120. doi: 10.3390/ijms18010120. PubMed DOI PMC
Kermanizadeh A., Jantzen K., Ward M.B., Durhuus J.A., Juel Rasmussen L., Loft S., Moller P. Nanomaterial-induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials: The role of autophagy and apoptosis. Nanotoxicology. 2017;11:184–200. doi: 10.1080/17435390.2017.1279359. PubMed DOI
Ge D., Du Q., Ran B., Liu X., Wang X., Ma X., Cheng F., Sun B. The neurotoxicity induced by engineered nanomaterials. Int. J. Nanomed. 2019;14:4167–4186. doi: 10.2147/IJN.S203352. PubMed DOI PMC
Fridovich I. Biological effects of the superoxide radical. Arch. BioChem. Biophys. 1986;247:1–11. doi: 10.1016/0003-9861(86)90526-6. PubMed DOI
Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
McIntyre M., Bohr D.F., Dominiczak A.F. Endothelial function in hypertension: The role of superoxide anion. Hypertension. 1999;34:539–545. doi: 10.1161/01.HYP.34.4.539. PubMed DOI
Bielski B.H.J., Cabelli D.E. Superoxide and Hydroxyl Radical Chemistry in Aqueous Solution. Act. Oxyg. Chem. 1995;2:66–104.
Ahsan H., Ali A., Ali R. Oxygen free radicals and systemic autoimmunity. Clin. Exp. Immunol. 2003;131:398–404. doi: 10.1046/j.1365-2249.2003.02104.x. PubMed DOI PMC
Perry J.J.P., Shin D.S., Getzoff E.D., Tainer J.A. The structural biochemistry of the superoxide dismutases. Bba-Proteins Proteom. 2010;1804:245–262. doi: 10.1016/j.bbapap.2009.11.004. PubMed DOI PMC
Borgstahl G.E.O., Oberley-Deegan R.E. Superoxide Dismutases (SODs) and SOD Mimetics. Antioxidants. 2018;7:156. doi: 10.3390/antiox7110156. PubMed DOI PMC
Landis G.N., Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005;126:365–379. doi: 10.1016/j.mad.2004.08.012. PubMed DOI
Loschen G., Flohe L., Chance B. Respiratory Chain Linked H2o2 Production in Pigeon Heart Mitochondria. FEBS Lett. 1971;18:261–264. doi: 10.1016/0014-5793(71)80459-3. PubMed DOI
Loschen G., Azzi A., Richter C., Flohe L. Superoxide Radicals as Precursors of Mitochondrial Hydrogen-Peroxide. FEBS Lett. 1974;42:68–72. doi: 10.1016/0014-5793(74)80281-4. PubMed DOI
Wilson D.F., Erecinska M., Dutton P.L. Thermodynamic Relationships in Mitochondrial Oxidative-Phosphorylation. Annu. Rev. Biophys. Bio. 1974;3:203–230. doi: 10.1146/annurev.bb.03.060174.001223. PubMed DOI
Ballard J.W., Youngson N.A. Review: Can diet influence the selective advantage of mitochondrial DNA haplotypes? Biosci. Rep. 2015;35 doi: 10.1042/BSR20150232. PubMed DOI PMC
Liu Y.B., Fiskum G., Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. NeuroChem. 2002;80:780–787. doi: 10.1046/j.0022-3042.2002.00744.x. PubMed DOI
Kushnareva Y., Murphy A.N., Andreyev A. Complex I-mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 2002;368:545–553. doi: 10.1042/bj20021121. PubMed DOI PMC
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC
Wikstrom M.K., Berden J.A. Oxidoreduction of cytochrome b in the presence of antimycin. Biochim. Biophys. Acta. 1972;283:403–420. doi: 10.1016/0005-2728(72)90258-7. PubMed DOI
Muller F., Crofts A.R., Kramer D.M. Multiple Q-cycle bypass reactions at the Qo site of the cytochiome bc1 complex. Biochemistry. 2002;41:7866–7874. doi: 10.1021/bi025581e. PubMed DOI
Bleier L., Drose S. Superoxide generation by complex III: From mechanistic rationales to functional consequences. Biochim. Biophys. Acta. 2013;1827:1320–1331. doi: 10.1016/j.bbabio.2012.12.002. PubMed DOI
Grzelak A., Wojewodzka M., Meczynska-Wielgosz S., Zuberek M., Wojciechowska D., Kruszewski M. Crucial role of chelatable iron in silver nanoparticles induced DNA damage and cytotoxicity. Redox Biol. 2018;15:435–440. doi: 10.1016/j.redox.2018.01.006. PubMed DOI PMC
Jayaram D.T., Payne C.K. Intracellular Generation of Superoxide by TiO2 Nanoparticles Decreases Histone Deacetylase 9 (HDAC9), an Epigenetic Modifier. Bioconjug. Chem. 2020;31:1354–1361. doi: 10.1021/acs.bioconjchem.0c00091. PubMed DOI
Masoud R., Bizouarn T., Trepout S., Wien F., Baciou L., Marco S., Houee Levin C. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase. PLoS ONE. 2015;10:e0144829. doi: 10.1371/journal.pone.0144829. PubMed DOI PMC
Akhtar M.J., Kumar S., Alhadlaq H.A., Alrokayan S.A., Abu-Salah K.M., Ahamed M. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol. Ind. Health. 2016;32:809–821. doi: 10.1177/0748233713511512. PubMed DOI
Piret J.P., Jacques D., Audinot J.N., Mejia J., Boilan E., Noel F., Fransolet M., Demazy C., Lucas S., Saout C., et al. Copper (II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale. 2012;4:7168–7184. doi: 10.1039/c2nr31785k. PubMed DOI
Piao M.J., Kang K.A., Lee I.K., Kim H.S., Kim S., Choi J.Y., Choi J., Hyun J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 2011;201:92–100. doi: 10.1016/j.toxlet.2010.12.010. PubMed DOI
Zielonka J., Srinivasan S., Hardy M., Ouari O., Lopez M., Vasquez-Vivar J., Avadhani N.G., Kalyanaraman B. Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: Identification of homo- and heterodimers. Free Radic. Biol. Med. 2008;44:835–846. doi: 10.1016/j.freeradbiomed.2007.11.013. PubMed DOI PMC
Ross M.F., Kelso G.F., Blaikie F.H., James A.M., Cocheme H.M., Filipovska A., Da Ros T., Hurd T.R., Smith R.A.J., Murphy M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry. 2005;70:222–230. doi: 10.1007/s10541-005-0104-5. PubMed DOI
Robinson K.M., Janes M.S., Pehar M., Monette J.S., Ross M.F., Hagen T.M., Murphy M.P., Beckman J.S. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. USA. 2006;103:15038–15043. doi: 10.1073/pnas.0601945103. PubMed DOI PMC
Kauffman M.E., Kauffman M.K., Traore K., Zhu H., Trush M.A., Jia Z., Li Y.R. MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS. React. Oxyg. Species. 2016;2:361–370. doi: 10.20455/ros.2016.865. PubMed DOI PMC
Mukhopadhyay P., Rajesh M., Yoshihiro K., Hasko G., Pacher P. Simple quantitative detection of mitochondrial superoxide production in live cells. BioChem. Biophys. Res. Commun. 2007;358:203–208. doi: 10.1016/j.bbrc.2007.04.106. PubMed DOI PMC
Roelofs B.A., Ge S.X., Studlack P.E., Polster B.M. Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Radic. Biol. Med. 2015;86:250–258. doi: 10.1016/j.freeradbiomed.2015.05.032. PubMed DOI PMC
Ohyashiki T., Nunomura M., Katoh T. Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylisobenzofuran. Bba-Biomembranes. 1999;1421:131–139. doi: 10.1016/S0005-2736(99)00119-4. PubMed DOI
Krieg M. Determination of singlet oxygen quantum yields with 1,3-diphenylisobenzofuran in model membrane systems. J. BioChem. Biophys. Methods. 1993;27:143–149. doi: 10.1016/0165-022X(93)90058-V. PubMed DOI
Zamojc K., Zdrowowicz M., Rudnicki-Velasquez P.B., Krzyminski K., Zaborowski B., Niedzialkowski P., Jacewicz D., Chmurzynski L. The development of 1,3-diphenylisobenzofuran as a highly selective probe for the detection and quantitative determination of hydrogen peroxide. Free Radic. Res. 2017;51:38–46. doi: 10.1080/10715762.2016.1262541. PubMed DOI
Andresen M., Regueira T., Bruhn A., Perez D., Strobel P., Dougnac A., Marshall G., Leighton F. Lipoperoxidation and protein oxidative damage exhibit different kinetics during septic shock. Mediat. Inflamm. 2008 doi: 10.1155/2008/168652. PubMed DOI PMC
Wu D.F., Cederbaum A.I. Alcohol, oxidative stress, and free radical damage. Alcohol. Res. Health. 2003;27:277–284. PubMed PMC
Halliwell B., Chirico S. Lipid-Peroxidation ― Its Mechanism, Measurement, and Significance. Am. J. Clin. Nutr. 1993;57:715–725. doi: 10.1093/ajcn/57.5.715S. PubMed DOI
Wang X., Zhang L. Kinetic study of hydroxyl radical formation in a continuous hydroxyl generation system. RSC Adv. 2018;8:40632–40638. doi: 10.1039/C8RA08511K. PubMed DOI PMC
Kehrer J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149:43–50. doi: 10.1016/S0300-483X(00)00231-6. PubMed DOI
Weinstein J., Bielski B.H.J. Kinetics of the Interaction of Ho2 and O2-Radicals with Hydrogen-Peroxide—Haber-Weiss Reaction. J. Am. Chem. Soc. 1979;101:58–62. doi: 10.1021/ja00495a010. DOI
Koppenol W.H. The Haber-Weiss cycle—70 years later. Redox Rep. 2001;6:229–234. doi: 10.1179/135100001101536373. PubMed DOI
Fischbacher A., von Sonntag C., Schmidt T.C. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe (II) ratios. Chemosphere. 2017;182:738–744. doi: 10.1016/j.chemosphere.2017.05.039. PubMed DOI
Wang T., Zhang H., Liu H., Yuan Q., Ren F., Han Y., Sun Q., Li Z., Gao M. Boosting H2O2-Guided Chemodynamic Therapy of Cancer by Enhancing Reaction Kinetics through Versatile Biomimetic Fenton Nanocatalysts and the Second Near-Infrared Light Irradiation. Adv. Funct. Mater. 2019;30 doi: 10.1002/adfm.201906128. DOI
Li X., Hao S.J., Han A.L., Yang Y.Y., Fang G.Z., Liu J.F., Wang S. Intracellular Fenton reaction based on mitochondria-targeted copper (II)-peptide complex for induced apoptosis. J. Mater. Chem. B. 2019;7:4008–4016. doi: 10.1039/C9TB00569B. DOI
Hackenberg S., Scherzed A., Technau A., Kessler M., Froelich K., Ginzkey C., Koehler C., Burghartz M., Hagen R., Kleinsasser N. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol. In Vitro. 2011;25:657–663. doi: 10.1016/j.tiv.2011.01.003. PubMed DOI
Ekici S., Turkarslan S., Pawlik G., Dancis A., Baliga N.S., Koch H.G., Daldal F. Intracytoplasmic copper homeostasis controls cytochrome c oxidase production. mBio. 2014;5 doi: 10.1128/mBio.01055-13. PubMed DOI PMC
Huang G., Chen H., Dong Y., Luo X., Yu H., Moore Z., Bey E.A., Boothman D.A., Gao J. Superparamagnetic iron oxide nanoparticles: Amplifying ROS stress to improve anticancer drug efficacy. Theranostics. 2013;3:116–126. doi: 10.7150/thno.5411. PubMed DOI PMC
Lehman S.E., Morris A.S., Mueller P.S., Salem A.K., Grassian V.H., Larsen S.C. Silica nanoparticle-generated ROS as a predictor of cellular toxicity: Mechanistic insights and safety by design. Environ. Sci-Nano. 2016;3:56–66. doi: 10.1039/C5EN00179J. PubMed DOI PMC
Chairuangkitti P., Lawanprasert S., Roytrakul S., Aueviriyavit S., Phummiratch D., Kulthong K., Chanvorachote P., Maniratanachote R. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol. In Vitro. 2013;27:330–338. doi: 10.1016/j.tiv.2012.08.021. PubMed DOI
Fang X.W., Mark G., von Sonntag C. OH radical formation by ultrasound in aqueous solutions Part І: The chemistry underlying the terephthalate dosimeter. Ultrason. SonoChem. 1996;3:57–63. doi: 10.1016/1350-4177(95)00032-1. DOI
Yan E.B., Unthank J.K., Castillo-Melendez M., Miller S.L., Langford S.J., Walker D.W. Novel method for in vivo hydroxyl radical measurement by microdialysis in fetal sheep brain in utero. J. Appl. Physiol. 2005;98:2304–2310. doi: 10.1152/japplphysiol.00617.2004. PubMed DOI
Yapici N.B., Jockusch S., Moscatelli A., Mandalapu S.R., Itagaki Y., Bates D.K., Wiseman S., Gibson K.M., Turro N.J., Bi L.R. New Rhodamine Nitroxide Based Fluorescent Probes for Intracellular Hydroxyl Radical Identification in Living Cells. Org. Lett. 2012;14:50–53. doi: 10.1021/ol202816m. PubMed DOI
Bai X.Y., Huang Y.Y., Lu M.Y., Yang D. HKOH-1: A Highly Sensitive and Selective Fluorescent Probe for Detecting Endogenous Hydroxyl Radicals in Living Cells. Angew. Chem. Int. Ed. 2017;56:12873–12877. doi: 10.1002/anie.201705873. PubMed DOI
Cheng X., Guo H., Zhang Y., Wu X., Liu Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 2017;113:80–88. doi: 10.1016/j.watres.2017.02.016. PubMed DOI
Cadenas E. Biochemistry of Oxygen-Toxicity. Annu. Rev. BioChem. 1989;58:79–110. doi: 10.1146/annurev.bi.58.070189.000455. PubMed DOI
Agnez-Lima L.F., Melo J.T.A., Silva A.E., Oliveira A.H.S., Timoteo A.R.S., Lima-Bessa K.M., Martinez G.R., Medeiros M.H.G., Di Mascio P., Galhardo R.S., et al. DNA damage by singlet oxygen and cellular protective mechanisms. Mutat. Res. Rev. Mutat. 2012;751:15–28. doi: 10.1016/j.mrrev.2011.12.005. PubMed DOI
Hampton M.B., Kettle A.J., Winterbourn C.C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92:3007–3017. doi: 10.1182/blood.V92.9.3007. PubMed DOI
Bigot E., Bataille R., Patrice T. Increased singlet oxygen-induced secondary ROS production in the serum of cancer patients. J. PhotoChem. PhotoBiol. B. 2012;107:14–19. doi: 10.1016/j.jphotobiol.2011.11.003. PubMed DOI
Sies H., Menck C.F.M. Singlet Oxygen Induced DNA Damage. Mutat Res. 1992;275:367–375. doi: 10.1016/0921-8734(92)90039-R. PubMed DOI
Kanofsky J.R. Singlet Oxygen Production by Biological-Systems. Chem. Biol. Interact. 1989;70:1–28. doi: 10.1016/0009-2797(89)90059-8. PubMed DOI
Dumont E., Gruber R., Bignon E., Morell C., Moreau Y., Monari A., Ravanat J.L. Probing the reactivity of singlet oxygen with purines. Nucleic Acids Res. 2016;44:56–62. doi: 10.1093/nar/gkv1364. PubMed DOI PMC
Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. BioChem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. PubMed DOI
Gracanin M., Hawkins C.L., Pattison D.I., Davies M.J. Singlet-oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products. Free Radic. Bio Med. 2009;47:92–102. doi: 10.1016/j.freeradbiomed.2009.04.015. PubMed DOI
Hirakawa T., Nosaka Y. Properties of O2.− and OH center dot formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir. 2002;18:3247–3254. doi: 10.1021/la015685a. DOI
Kim S.Y., Lee S.M., Park J.W. Antioxidant enzyme inhibitors enhance singlet oxygen-induced cell death in HL-60 cells. Free Radic. Res. 2006;40:1190–1197. doi: 10.1080/10715760600887768. PubMed DOI
Deng J., Liu F., Wang L., An Y., Gao M., Wang Z., Zhao Y. Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production. Biomater. Sci. 2018;7:429–441. doi: 10.1039/C8BM01042K. PubMed DOI
Kim S.Y., Lee S.M., Tak J.K., Choi K.S., Kwon T.K., Park J.W. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase. Mol. Cell Biochem. 2007;302:27–34. doi: 10.1007/s11010-007-9421-x. PubMed DOI
Umezawa N., Tanaka K., Urano Y., Kikuchi K., Higuchi T., Nagano T. Novel Fluorescent Probes for Singlet Oxygen. Angew. Chem. Int. Ed. Engl. 1999;38:2899–2901. doi: 10.1002/(SICI)1521-3773(19991004)38:19<2899::AID-ANIE2899>3.0.CO;2-M. PubMed DOI
Brega V., Yan Y., Thomas S.W., 3rd Acenes beyond organic electronics: Sensing of singlet oxygen and stimuli-responsive materials. Org. Biomol. Chem. 2020;18:9191–9209. doi: 10.1039/D0OB01744B. PubMed DOI
Ruiz-Gonzalez R., Bresoli-Obach R., Gulias O., Agut M., Savoie H., Boyle R.W., Nonell S., Giuntini F. NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen. Angew. Chem. Int. Ed. Engl. 2017;56:2885–2888. doi: 10.1002/anie.201609050. PubMed DOI
Lennicke C., Rahn J., Lichtenfels R., Wessjohann L.A., Seliger B. Hydrogen peroxide—Production, fate and role in redox signaling of tumor cells. Cell Commun. Signal. 2015;13:39. doi: 10.1186/s12964-015-0118-6. PubMed DOI PMC
Hossain M.A., Bhattacharjee S., Armin S.M., Qian P., Xin W., Li H.Y., Burritt D.J., Fujita M., Tran L.S. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant. Sci. 2015;6:420. doi: 10.3389/fpls.2015.00420. PubMed DOI PMC
Halliwell B., Clement M.V., Long L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000;486:10–13. doi: 10.1016/S0014-5793(00)02197-9. PubMed DOI
Mates J.M., Perez-Gomez C., De Castro I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999;32:595–603. doi: 10.1016/S0009-9120(99)00075-2. PubMed DOI
Angermuller S., Islinger M., Volkl A. Peroxisomes and reactive oxygen species, a lasting challenge. HistoChem. Cell Biol. 2009;131:459–463. doi: 10.1007/s00418-009-0563-7. PubMed DOI
Topo E., Fisher G., Sorricelli A., Errico F., Usiello A., D’Aniello A. Thyroid hormones and D-aspartic acid, D-aspartate oxidase, D-aspartate racemase, H2O2, and ROS in rats and mice. Chem. Biodivers. 2010;7:1467–1478. doi: 10.1002/cbdv.200900360. PubMed DOI
Royall J.A., Ischiropoulos H. Evaluation of 2’,7’-Dichlorofluorescin and Dihydrorhodamine 123 as Fluorescent-Probes for Intracellular H2o2 in Cultured Endothelial-Cells. Arch. Biochem. Biophys. 1993;302:348–355. doi: 10.1006/abbi.1993.1222. PubMed DOI
Rastogi R.P., Singh S.P., Hader D.P., Sinha R.P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2’,7’-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010;397:603–607. doi: 10.1016/j.bbrc.2010.06.006. PubMed DOI
Gomes A., Fernandes E., Lima J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Bioph Meth. 2005;65:45–80. doi: 10.1016/j.jbbm.2005.10.003. PubMed DOI
Crow J.P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: Implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide. 1997;1:145–157. doi: 10.1006/niox.1996.0113. PubMed DOI
Chignell C.F., Sik R.H. A photochemical study of cells loaded with 2’,7’-dichlorofluorescin: Implications for the detection of reactive oxygen species generated during UVA irradiation. Free Radic. Biol. Med. 2003;34:1029–1034. PubMed
Zhu H., Bannenberg G.L., Moldeus P., Shertzer H.G. Oxidation pathways for the intracellular probe 2’,7’-dichlorofluorescein. Arch. Toxicol. 1994;68:582–587. doi: 10.1007/s002040050118. PubMed DOI
Lebel C.P., Ischiropoulos H., Bondy S.C. Evaluation of the Probe 2’,7’-Dichlorofluorescin as an Indicator of Reactive Oxygen Species Formation and Oxidative Stress. Chem. Res. Toxicol. 1992;5:227–231. doi: 10.1021/tx00026a012. PubMed DOI
Hsiao I.L., Huang Y.J. Titanium Oxide Shell Coatings Decrease the Cytotoxicity of ZnO Nanoparticles. Chem. Res. Toxicol. 2011;24:303–313. doi: 10.1021/tx1001892. PubMed DOI
Akhtar M.J., Ahamed M., Kumar S., Khan M.M., Ahmad J., Alrokayan S.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 2012;7:845–857. PubMed PMC
Sharma V., Anderson D., Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2) Apoptosis. 2012;17:852–870. doi: 10.1007/s10495-012-0705-6. PubMed DOI
Setyawati M.I., Tay C.Y., Leong D.T. Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials. 2013;34:10133–10142. doi: 10.1016/j.biomaterials.2013.09.024. PubMed DOI
Aliakbari F., Haji Hosseinali S., Khalili Sarokhalil Z., Shahpasand K., Akbar Saboury A., Akhtari K., Falahati M. Reactive oxygen species generated by titanium oxide nanoparticles stimulate the hemoglobin denaturation and cytotoxicity against human lymphocyte cell. J. Biomol. Struct. Dyn. 2019;37:4875–4881. doi: 10.1080/07391102.2019.1568305. PubMed DOI
Bhattacharya K., Davoren M., Boertz J., Schins R.P., Hoffmann E., Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part. Fibre Toxicol. 2009;6:17. doi: 10.1186/1743-8977-6-17. PubMed DOI PMC
Liu S., Xu L., Zhang T., Ren G., Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology. 2010;267:172–177. doi: 10.1016/j.tox.2009.11.012. PubMed DOI
Park E.J., Yi J., Chung K.H., Ryu D.Y., Choi J., Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008;180:222–229. doi: 10.1016/j.toxlet.2008.06.869. PubMed DOI
Miwa S., Treumann A., Bell A., Vistoli G., Nelson G., Hay S., von Zglinicki T. Carboxylesterase converts Amplex red to resorufin: Implications for mitochondrial H2O2 release assays. Free Radic. Biol. Med. 2016;90:173–183. doi: 10.1016/j.freeradbiomed.2015.11.011. PubMed DOI PMC
Zhu A., Romero R., Petty H.R. A sensitive fluorimetric assay for pyruvate. Anal. BioChem. 2010;396:146–151. doi: 10.1016/j.ab.2009.09.017. PubMed DOI PMC
Towne V., Will M., Oswald B., Zhao Q.J. Complexities in horseradish peroxidase-catalyzed oxidation of dihydroxyphenoxazine derivatives: Appropriate ranges for pH values and hydrogen peroxide concentrations in quantitative analysis. Anal. Biochem. 2004;334:290–296. doi: 10.1016/j.ab.2004.07.037. PubMed DOI
Debski D., Smulik R., Zielonka J., Michalowski B., Jakubowska M., Debowska K., Adamus J., Marcinek A., Kalyanaraman B., Sikora A. Mechanism of oxidative conversion of Amplex (R) Red to resorufin: Pulse radiolysis and enzymatic studies. Free Radic. Bio Med. 2016;95:323–332. doi: 10.1016/j.freeradbiomed.2016.03.027. PubMed DOI PMC
Niethammer P., Grabher C., Look A.T., Mitchison T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 2009;459:996–999. doi: 10.1038/nature08119. PubMed DOI PMC
Maeda H., Fukuyasu Y., Yoshida S., Fukuda M., Saeki K., Matsuno H., Yamauchi Y., Yoshida K., Hirata K., Miyamoto K. Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem. Int. Ed. Engl. 2004;43:2389–2391. doi: 10.1002/anie.200452381. PubMed DOI
Wolfbeis O.S., Durkop A., Wu M., Lin Z.H. A europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew. Chem. Int. Ed. 2002;41:4495–4498. doi: 10.1002/1521-3773(20021202)41:23<4495::AID-ANIE4495>3.0.CO;2-I. PubMed DOI
Staniek K., Nohl H. H2O2 detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system. Bba-Bioenergetics. 1999;1413:70–80. doi: 10.1016/S0005-2728(99)00083-3. PubMed DOI
Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta. 2006;368:53–76. doi: 10.1016/j.cca.2005.12.039. PubMed DOI
Mohammadinejad R., Moosavi M.A., Tavakol S., Vardar D.O., Hosseini A., Rahmati M., Dini L., Hussain S., Mandegary A., Klionsky D.J. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 2019;15:4–33. doi: 10.1080/15548627.2018.1509171. PubMed DOI PMC
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant. Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI
Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-Mediated Cellular Signaling. Oxid Med. Cell Longev. 2016 doi: 10.1155/2016/4350965. PubMed DOI PMC
Bae Y.S., Oh H., Rhee S.G., Yoo Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells. 2011;32:491–509. doi: 10.1007/s10059-011-0276-3. PubMed DOI PMC
Bonizzi G., Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–288. doi: 10.1016/j.it.2004.03.008. PubMed DOI
Kaul N., Gopalakrishna R., Gundimeda U., Choi J., Forman H.J. Role of protein kinase C in basal and hydrogen peroxide-stimulated NF-kappa B activation in the murine macrophage J774A.1 cell line. Arch. Biochem. Biophys. 1998;350:79–86. doi: 10.1006/abbi.1997.0487. PubMed DOI
Schmidt K.N., Amstad P., Cerutti P., Baeuerle P.A. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem. Biol. 1995;2:13–22. doi: 10.1016/1074-5521(95)90076-4. PubMed DOI
Schoonbroodt S., Ferreira V., Best-Belpomme M., Boelaert J.R., Legrand-Poels S., Korner M., Piette J. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. J. Immunol. 2000;164:4292–4300. doi: 10.4049/jimmunol.164.8.4292. PubMed DOI
Takada Y., Mukhopadhyay A., Kundu G.C., Mahabeleshwar G.H., Singh S., Aggarwal B.B. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: Evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J. Biol. Chem. 2003;278:24233–24241. doi: 10.1074/jbc.M212389200. PubMed DOI
Liu X., Lu B., Fu J., Zhu X., Song E., Song Y. Amorphous silica nanoparticles induce inflammation via activation of NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-kb signaling pathway in HUVEC cells. J. Hazard. Mater. 2021;404:124050. doi: 10.1016/j.jhazmat.2020.124050. PubMed DOI
Kyriakis J.M., Avruch J. Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 1996;271:24313–24316. doi: 10.1074/jbc.271.40.24313. PubMed DOI
Nakano H., Nakajima A., Sakon-Komazawa S., Piao J.H., Xue X., Okumura K. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ. 2006;13:730–737. doi: 10.1038/sj.cdd.4401830. PubMed DOI
Torres M., Forman H.J. Redox signaling and the MAP kinase pathways. Biofactors. 2003;17:287–296. doi: 10.1002/biof.5520170128. PubMed DOI
Dabrowski A., Boguslowicz C., Dabrowska M., Tribillo I., Gabryelewicz A. Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas. 2000;21:376–384. doi: 10.1097/00006676-200011000-00008. PubMed DOI
Guyton K.Z., Liu Y., Gorospe M., Xu Q., Holbrook N.J. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J. Biol. Chem. 1996;271:4138–4142. doi: 10.1074/jbc.271.8.4138. PubMed DOI
Hou N., Torii S., Saito N., Hosaka M., Takeuchi T. Reactive oxygen species-mediated pancreatic beta-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-Jun N-terminal kinase, and mitogen-activated protein kinase phosphatases. Endocrinology. 2008;149:1654–1665. doi: 10.1210/en.2007-0988. PubMed DOI
Choi B.H., Hur E.M., Lee J.H., Jun D.J., Kim K.T. Protein kinase Cdelta-mediated proteasomal degradation of MAP kinase phosphatase-1 contributes to glutamate-induced neuronal cell death. J. Cell Sci. 2006;119:1329–1340. doi: 10.1242/jcs.02837. PubMed DOI
Matsuzawa A., Saegusa K., Noguchi T., Sadamitsu C., Nishitoh H., Nagai S., Koyasu S., Matsumoto K., Takeda K., Ichijo H. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat. Immunol. 2005;6:587–592. doi: 10.1038/ni1200. PubMed DOI
Pitzschke A., Djamei A., Bitton F., Hirt H. A Major Role of the MEKK1-MKK1/2-MPK4 Pathway in ROS Signalling. Mol. Plant. 2009;2:120–137. doi: 10.1093/mp/ssn079. PubMed DOI PMC
Lluis J.M., Buricchi F., Chiarugi P., Morales A., Fernandez-Checa J.C. Dual role of mitochondrial reactive oxygen species in hypoxia signaling: Activation of nuclear factor-kB via c-SRC and oxidant-dependent cell death. Cancer Res. 2007;67:7368–7377. doi: 10.1158/0008-5472.CAN-07-0515. PubMed DOI
Dong J., Ramachandiran S., Tikoo K., Jia Z., Lau S.S., Monks T.J. EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death. Am. J. Physiol. Renal Physiol. 2004;287:1049–1058. doi: 10.1152/ajprenal.00132.2004. PubMed DOI
Forman H.J., Torres M. Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care Med. 2002;166 doi: 10.1164/rccm.2206007. PubMed DOI
Cheng G., Guo W., Han L., Chen E., Kong L., Wang L., Ai W., Song N., Li H., Chen H. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol. In Vitro. 2013;27:1082–1088. doi: 10.1016/j.tiv.2013.02.005. PubMed DOI
Guo C., Xia Y., Niu P., Jiang L., Duan J., Yu Y., Zhou X., Li Y., Sun Z. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling. Int. J. Nanomed. 2015;10:1463–1477. doi: 10.2147/IJN.S76114. PubMed DOI PMC
You R., Ho Y.S., Hung C.H., Liu Y., Huang C.X., Chan H.N., Ho S.L., Lui S.Y., Li H.W., Chang R.C. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part. Fibre Toxicol. 2018;15:28. doi: 10.1186/s12989-018-0263-3. PubMed DOI PMC
Hu Q., Wang H., He C., Jin Y., Fu Z. Polystyrene nanoparticles trigger the activation of p38 MAPK and apoptosis via inducing oxidative stress in zebrafish and macrophage cells. Environ. Pollut. 2021;269:116075. doi: 10.1016/j.envpol.2020.116075. PubMed DOI
Zhou Y., Ji J., Ji L., Wang L., Hong F. Respiratory exposure to nano-TiO2 induces pulmonary toxicity in mice involving reactive free radical-activated TGF-beta/Smad/p38MAPK/Wnt pathways. J. Biomed. Mater. Res. A. 2019;107:2567–2575. doi: 10.1002/jbm.a.36762. PubMed DOI
Yi C., Liu D., Fong C.C., Zhang J., Yang M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano. 2010;4:6439–6448. doi: 10.1021/nn101373r. PubMed DOI
Wang Q., Chen B., Cao M., Sun J., Wu H., Zhao P., Xing J., Yang Y., Zhang X., Ji M., et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials. 2016;86:11–20. doi: 10.1016/j.biomaterials.2016.02.004. PubMed DOI
Vousden K.H., Lu X. Live or let die: The cell’s response to p53. Nat. Rev. Cancer. 2002;2:594–604. doi: 10.1038/nrc864. PubMed DOI
Liu B., Chen Y., St Clair D.K. ROS and p53: A versatile partnership. Free Radic. Biol. Med. 2008;44:1529–1535. doi: 10.1016/j.freeradbiomed.2008.01.011. PubMed DOI PMC
Song Y.X., Li X.W., Li Y., Li N., Shi X.X., Ding H.Y., Zhang Y.H., Li X.B., Liu G.W., Wang Z. Non-esterified fatty acids activate the ROS-p38-p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis. 2014;19:984–997. doi: 10.1007/s10495-014-0982-3. PubMed DOI
Nakano K., Vousden K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 2001;7:683–694. doi: 10.1016/S1097-2765(01)00214-3. PubMed DOI
Liu B.R., Yuan B., Zhang L., Mu W.M., Wang C.M. ROS/p38/p53/Puma signaling pathway is involved in emodin-induced apoptosis of human colorectal cancer cells. Int. J. Clin. Exp. Med. 2015;8:15413–15422. PubMed PMC
Yu J., Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27:71–83. doi: 10.1038/onc.2009.45. PubMed DOI PMC
Samuelsen J.T., Dahl J.E., Karlsson S., Morisbak E., Becher R. Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent. Mater. 2007;23:34–39. doi: 10.1016/j.dental.2005.11.037. PubMed DOI
Sakon S., Xue X., Takekawa M., Sasazuki T., Okazaki T., Kojima Y., Piao J.H., Yagita H., Okumura K., Doi T., et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. Embo J. 2003;22:3898–3909. doi: 10.1093/emboj/cdg379. PubMed DOI PMC
Kamata H., Honda S., Maeda S., Chang L., Hirata H., Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–661. doi: 10.1016/j.cell.2004.12.041. PubMed DOI
Akcan R., Aydogan H.C., Yildirim M.S., Tastekin B., Saglam N. Nanotoxicity: A challenge for future medicine. Turk. J. Med. Sci. 2020;50:1180–1196. doi: 10.3906/sag-1912-209. PubMed DOI PMC
Graham U.M., Dozier A.K., Oberdorster G., Yokel R.A., Molina R., Brain J.D., Pinto J.M., Weuve J., Bennett D.A. Tissue Specific Fate of Nanomaterials by Advanced Analytical Imaging Techniques—A Review. Chem. Res. Toxicol. 2020;33:1145–1162. doi: 10.1021/acs.chemrestox.0c00072. PubMed DOI PMC
Pu S., Gong C., Robertson A.W. Liquid cell transmission electron microscopy and its applications. R. Soc. Open Sci. 2020;7:191204. doi: 10.1098/rsos.191204. PubMed DOI PMC
Kiio T.M., Park S. Nano-scientific Application of Atomic Force Microscopy in Pathology: From Molecules to Tissues. Int. J. Med. Sci. 2020;17:844–858. doi: 10.7150/ijms.41805. PubMed DOI PMC
Erofeev A., Gorelkin P., Garanina A., Alova A., Efremova M., Vorobyeva N., Edwards C., Korchev Y., Majouga A. Novel method for rapid toxicity screening of magnetic nanoparticles. Sci. Rep. 2018;8:7462. doi: 10.1038/s41598-018-25852-4. PubMed DOI PMC
Rahman L., Williams A., Gelda K., Nikota J., Wu D., Vogel U., Halappanavar S. 21st Century Tools for Nanotoxicology: Transcriptomic Biomarker Panel and Precision-Cut Lung Slice Organ Mimic System for the Assessment of Nanomaterial-Induced Lung Fibrosis. Small. 2020;16 doi: 10.1002/smll.202000272. PubMed DOI
Kohl Y., Runden-Pran E., Mariussen E., Hesler M., El Yamani N., Longhin E.M., Dusinska M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment-A Review. Nanomaterials (Basel) 2020;10:1911. doi: 10.3390/nano10101911. PubMed DOI PMC
Zhang M., Xu C., Jiang L., Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol. Res. 2018;7:1048–1060. doi: 10.1039/C8TX00156A. PubMed DOI PMC
Yin F., Zhu Y., Zhang M., Yu H., Chen W., Qin J. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol. In Vitro. 2019;54:105–113. doi: 10.1016/j.tiv.2018.08.014. PubMed DOI
van Duinen V., Trietsch S.J., Joore J., Vulto P., Hankemeier T. Microfluidic 3D cell culture: From tools to tissue models. Curr. Opin. Biotechnol. 2015;35:118–126. doi: 10.1016/j.copbio.2015.05.002. PubMed DOI