Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/18_069/0010046
European Union
PubMed
33672884
PubMed Central
PMC7918546
DOI
10.3390/cancers13040795
PII: cancers13040795
Knihovny.cz E-resources
- Keywords
- ATR–CHK1–WEE1 axis, DNA damage response, cell-cycle checkpoints, clinical trials, inhibitors,
- Publication type
- Journal Article MeSH
- Review MeSH
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
See more in PubMed
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Asghar U., Witkiewicz A.K., Turner N.C., Knudsen E.S. The History and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015;14:130–146. doi: 10.1038/nrd4504. PubMed DOI PMC
Roskoski R. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharm. Res. 2015;100:1–23. doi: 10.1016/j.phrs.2015.07.010. PubMed DOI
Otto T., Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer. 2017;17:93–115. doi: 10.1038/nrc.2016.138. PubMed DOI PMC
Pitts T.M., Davis S.L., Eckhardt S.G., Bradshaw-Pierce E.L. Targeting nuclear kinases in cancer: Development of cell cycle kinase inhibitors. Pharm. Ther. 2014;142:258–269. doi: 10.1016/j.pharmthera.2013.12.010. PubMed DOI
García-Muse T., Aguilera A. Transcription–Replication conflicts: How They occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 2016;17:553–563. doi: 10.1038/nrm.2016.88. PubMed DOI
McHugh P.J., Spanswick V.J., Hartley J.A. Repair of DNA interstrand crosslinks: Molecular mechanisms and clinical relevance. Lancet Oncol. 2001;2:483–490. doi: 10.1016/S1470-2045(01)00454-5. PubMed DOI
Kastan M.B., Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–323. doi: 10.1038/nature03097. PubMed DOI
Sherr C.J. Cancer cell cycles. Science. 1996;274:1672–1677. doi: 10.1126/science.274.5293.1672. PubMed DOI
Nurse P., Masui Y., Hartwell L. Understanding the cell cycle. Nat. Med. 1998;4:1103–1106. doi: 10.1038/2594. PubMed DOI
Roskoski R. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharm. Res. 2019;139:471–488. doi: 10.1016/j.phrs.2018.11.035. PubMed DOI
Dalton S. Linking the cell cycle to cell fate decisions. Trends Cell Biol. 2015;25:592–600. doi: 10.1016/j.tcb.2015.07.007. PubMed DOI PMC
Blagosklonny M.V., Pardee A.B. The restriction point of the cell cycle. Cell Cycle Georg. Tex. 2002;1:103–110. doi: 10.4161/cc.1.2.108. PubMed DOI
Massagué J. G1 Cell-Cycle Control and Cancer. Nature. 2004;432:298–306. doi: 10.1038/nature03094. PubMed DOI
Denisenko T.V., Sorokina I.V., Gogvadze V., Zhivotovsky B. Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist. Updat. 2016;24:1–12. doi: 10.1016/j.drup.2015.11.002. PubMed DOI
Toledo L., Neelsen K.J., Lukas J. Replication catastrophe: When a checkpoint fails because of exhaustion. Mol. Cell. 2017;66:735–749. doi: 10.1016/j.molcel.2017.05.001. PubMed DOI
Kantidze O.L., Velichko A.K., Luzhin A.V., Petrova N.V., Razin S.V. Synthetically lethal interactions of ATM, ATR, and DNA-PKcs. Trends Cancer. 2018;4:755–768. doi: 10.1016/j.trecan.2018.09.007. PubMed DOI
Bouwman P., Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer. 2012;12:587–598. doi: 10.1038/nrc3342. PubMed DOI
Saldivar J.C., Cortez D., Cimprich K.A. The essential kinase ATR: Ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 2017;18:622–636. doi: 10.1038/nrm.2017.67. PubMed DOI PMC
Cimprich K.A., Cortez D. ATR: An essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 2008;9:616–627. doi: 10.1038/nrm2450. PubMed DOI PMC
Cortez D. Preventing replication fork collapse to maintain genome integrity. DNA Repair. 2015;32:149–157. doi: 10.1016/j.dnarep.2015.04.026. PubMed DOI PMC
Lopes M., Cotta-Ramusino C., Pellicioli A., Liberi G., Plevani P., Muzi-Falconi M., Newlon C.S., Foiani M. The DNA replication checkpoint response stabilizes stalled replication forks. Nature. 2001;412:557–561. doi: 10.1038/35087613. PubMed DOI
Blackford A.N., Jackson S.P. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol. Cell. 2017;66:801–817. doi: 10.1016/j.molcel.2017.05.015. PubMed DOI
Maréchal A., Zou L. DNA Damage sensing by the ATM and ATR Kinases. Cold Spring Harb. Perspect. Biol. 2013;5:a012716. doi: 10.1101/cshperspect.a012716. PubMed DOI PMC
Lovejoy C.A., Cortez D. Common mechanisms of PIKK regulation. DNA Repair. 2009;8:1004–1008. doi: 10.1016/j.dnarep.2009.04.006. PubMed DOI PMC
Brown E.J., Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000;14:397–402. PubMed PMC
Murga M., Bunting S., Montaña M.F., Soria R., Mulero F., Cañamero M., Lee Y., McKinnon P.J., Nussenzweig A., Fernandez-Capetillo O. A mouse model of ATR-seckel shows embryonic replicative stress and accelerated aging. Nat. Genet. 2009;41:891–898. doi: 10.1038/ng.420. PubMed DOI PMC
Gurpinar E., Vousden K.H. Hitting cancers’ weak spots: Vulnerabilities imposed by P53 mutation. Trends Cell Biol. 2015;25:486–495. doi: 10.1016/j.tcb.2015.04.001. PubMed DOI
Jin M.H., Oh D.-Y. ATM in DNA repair in cancer. Pharm. Ther. 2019;203:107391. doi: 10.1016/j.pharmthera.2019.07.002. PubMed DOI
Liao H., Ji F., Helleday T., Ying S. Mechanisms for stalled replication fork stabilization: New targets for synthetic lethality strategies in cancer treatments. EMBO Rep. 2018:19. doi: 10.15252/embr.201846263. PubMed DOI PMC
Zeman M.K., Cimprich K.A. Causes and consequences of replication stress. Nat. Cell Biol. 2014;16:2–9. doi: 10.1038/ncb2897. PubMed DOI PMC
Técher H., Koundrioukoff S., Nicolas A., Debatisse M. The Impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat. Rev. Genet. 2017;18:535–550. doi: 10.1038/nrg.2017.46. PubMed DOI
Lecona E., Fernandez-Capetillo O. Targeting ATR in cancer. Nat. Rev. Cancer. 2018;18:586–595. doi: 10.1038/s41568-018-0034-3. PubMed DOI
Smits V.A.J., Cabrera E., Freire R., Gillespie D.A. Claspin—Checkpoint adaptor and DNA replication factor. FEBS J. 2019;286:441–455. doi: 10.1111/febs.14594. PubMed DOI
Kumagai A., Lee J., Yoo H.Y., Dunphy W.G. TopBP1 activates the ATR-ATRIP complex. Cell. 2006;124:943–955. doi: 10.1016/j.cell.2005.12.041. PubMed DOI
Bass T.E., Luzwick J.W., Kavanaugh G., Carroll C., Dungrawala H., Glick G.G., Feldkamp M.D., Putney R., Chazin W.J., Cortez D. ETAA1 Acts at stalled replication forks to maintain genome integrity. Nat. Cell Biol. 2016;18:1185–1195. doi: 10.1038/ncb3415. PubMed DOI PMC
Zheng T., Zhou H., Li X., Peng D., Yang Y., Zeng Y., Liu H., Ren J., Zhao Y. RBMX is required for activation of ATR on repetitive DNAs to maintain genome stability. Cell Death Differ. 2020:1–15. doi: 10.1038/s41418-020-0570-8. PubMed DOI PMC
Inoue D., Sagata N. The polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of xenopus eggs. EMBO J. 2005;24:1057–1067. doi: 10.1038/sj.emboj.7600567. PubMed DOI PMC
Harvey S.L., Charlet A., Haas W., Gygi S.P., Kellogg D.R. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell. 2005;122:407–420. doi: 10.1016/j.cell.2005.05.029. PubMed DOI
Van Vugt M.A.T.M., Brás A., Medema R.H. Polo-like Kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol. Cell. 2004;15:799–811. doi: 10.1016/j.molcel.2004.07.015. PubMed DOI
Yamaguchi T., Goto H., Yokoyama T., Silljé H., Hanisch A., Uldschmid A., Takai Y., Oguri T., Nigg E.A., Inagaki M. Phosphorylation by Cdk1 Induces Plk1-mediated vimentin phosphorylation during Mitosis. J. Cell Biol. 2005;171:431–436. doi: 10.1083/jcb.200504091. PubMed DOI PMC
Roshak A.K., Capper E.A., Imburgia C., Fornwald J., Scott G., Marshall L.A. The human polo-like kinase, PLK, regulates Cdc2/Cyclin B through phosphorylation and activation of the Cdc25C Phosphatase. Cell. Signal. 2000;12:405–411. doi: 10.1016/S0898-6568(00)00080-2. PubMed DOI
Macůrek L., Lindqvist A., Lim D., Lampson M.A., Klompmaker R., Freire R., Clouin C., Taylor S.S., Yaffe M.B., Medema R.H. Polo-like Kinase-1 Is activated by aurora a to promote checkpoint recovery. Nature. 2008;455:119–123. doi: 10.1038/nature07185. PubMed DOI
Seki A., Coppinger J.A., Jang C.-Y., Yates J.R., Fang G. Bora and the kinase aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science. 2008;320:1655–1658. doi: 10.1126/science.1157425. PubMed DOI PMC
Neelsen K.J., Lopes M. Replication fork reversal in eukaryotes: From dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 2015;16:207–220. doi: 10.1038/nrm3935. PubMed DOI
Mutreja K., Krietsch J., Hess J., Ursich S., Berti M., Roessler F.K., Zellweger R., Patra M., Gasser G., Lopes M. ATR-Mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links. Cell Rep. 2018;24:2629–2642.e5. doi: 10.1016/j.celrep.2018.08.019. PubMed DOI PMC
Cortez D., Glick G., Elledge S.J. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc. Natl. Acad. Sci. USA. 2004;101:10078–10083. doi: 10.1073/pnas.0403410101. PubMed DOI PMC
Toledo L.I., Altmeyer M., Rask M.-B., Lukas C., Larsen D.H., Povlsen L.K., Bekker-Jensen S., Mailand N., Bartek J., Lukas J. ATR Prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 2013;155:1088–1103. doi: 10.1016/j.cell.2013.10.043. PubMed DOI
D’Angiolella V., Donato V., Forrester F.M., Jeong Y.-T., Pellacani C., Kudo Y., Saraf A., Florens L., Washburn M.P., Pagano M. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell. 2012;149:1023–1034. doi: 10.1016/j.cell.2012.03.043. PubMed DOI PMC
Le T.M., Poddar S., Capri J.R., Abt E.R., Kim W., Wei L., Uong N.T., Cheng C.M., Braas D., Nikanjam M., et al. ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways. Nat. Commun. 2017;8:241. doi: 10.1038/s41467-017-00221-3. PubMed DOI PMC
Buisson R., Niraj J., Rodrigue A., Ho C.K., Kreuzer J., Foo T.K., Hardy E.J.-L., Dellaire G., Haas W., Xia B., et al. Coupling of homologous recombination and the checkpoint by ATR. Mol. Cell. 2017;65:336–346. doi: 10.1016/j.molcel.2016.12.007. PubMed DOI PMC
Wu X., Shell S.M., Liu Y., Zou Y. ATR-Dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene. 2007;26:757–764. doi: 10.1038/sj.onc.1209828. PubMed DOI PMC
Smits V.A.J., Gillespie D.A. DNA damage control: Regulation and functions of checkpoint kinase 1. FEBS J. 2015;282:3681–3692. doi: 10.1111/febs.13387. PubMed DOI
Petermann E., Woodcock M., Helleday T. Chk1 promotes replication fork progression by controlling replication initiation. Proc. Natl. Acad. Sci. USA. 2010;107:16090–16095. doi: 10.1073/pnas.1005031107. PubMed DOI PMC
Sørensen C.S., Syljuåsen R.G., Falck J., Schroeder T., Rönnstrand L., Khanna K.K., Zhou B.-B., Bartek J., Lukas J. Chk1 Regulates the S Phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell. 2003;3:247–258. doi: 10.1016/S1535-6108(03)00048-5. PubMed DOI
Mueller P.R., Coleman T.R., Kumagai A., Dunphy W.G. Myt1: A Membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science. 1995;270:86–90. doi: 10.1126/science.270.5233.86. PubMed DOI
Chow J.P.H., Poon R.Y.C. The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery. Oncogene. 2013;32:4778–4788. doi: 10.1038/onc.2012.504. PubMed DOI
Martín Y., Domínguez-Kelly R., Freire R. Novel insights into maintaining genomic integrity: Wee1 regulating Mus81/Eme1. Cell Div. 2011;6:21. doi: 10.1186/1747-1028-6-21. PubMed DOI PMC
Watanabe N., Broome M., Hunter T. Regulation of the human WEE1Hu CDK tyrosine 15-Kinase during the cell cycle. EMBO J. 1995;14:1878–1891. doi: 10.1002/j.1460-2075.1995.tb07180.x. PubMed DOI PMC
Do K., Doroshow J.H., Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle. 2013;12:3348–3353. doi: 10.4161/cc.26062. PubMed DOI PMC
Poon R.Y.C. Cell cycle control: A system of interlinking oscillators. Methods Mol. Biol. Clifton N J. 2016;1342:3–19. doi: 10.1007/978-1-4939-2957-3_1. PubMed DOI
Boutros R., Lobjois V., Ducommun B. CDC25 phosphatases in cancer cells: Key players? Good targets? Nat. Rev. Cancer. 2007;7:495–507. doi: 10.1038/nrc2169. PubMed DOI
Guo C., Kumagai A., Schlacher K., Shevchenko A., Shevchenko A., Dunphy W.G. Interaction of Chk1 with treslin negatively regulates the initiation of chromosomal DNA replication. Mol. Cell. 2015;57:492–505. doi: 10.1016/j.molcel.2014.12.003. PubMed DOI PMC
Heffernan T.P., Ünsal-Kaçmaz K., Heinloth A.N., Simpson D.A., Paules R.S., Sancar A., Cordeiro-Stone M., Kaufmann W.K. Cdc7-Dbf4 and the human S checkpoint response to UVC. J. Biol. Chem. 2007;282:9458–9468. doi: 10.1074/jbc.M611292200. PubMed DOI PMC
Shimada M., Niida H., Zineldeen D.H., Tagami H., Tanaka M., Saito H., Nakanishi M. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell. 2008;132:221–232. doi: 10.1016/j.cell.2007.12.013. PubMed DOI
Sørensen C.S., Hansen L.T., Dziegielewski J., Syljuåsen R.G., Lundin C., Bartek J., Helleday T. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol. 2005;7:195–201. doi: 10.1038/ncb1212. PubMed DOI
Bahassi E.M., Ovesen J.L., Riesenberg A.L., Bernstein W.Z., Hasty P.E., Stambrook P.J. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between HBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008;27:3977–3985. doi: 10.1038/onc.2008.17. PubMed DOI
Segura-Bayona S., Stracker T.H. The Tousled-like kinases regulate genome and epigenome stability: Implications in development and disease. Cell. Mol. Life Sci. CMLS. 2019;76:3827–3841. doi: 10.1007/s00018-019-03208-z. PubMed DOI PMC
Mackay D.R., Ullman K.S. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission. Mol. Biol. Cell. 2015;26:2217–2226. doi: 10.1091/mbc.E14-11-1563. PubMed DOI PMC
Peddibhotla S., Lam M.H., Gonzalez-Rimbau M., Rosen J.M. The DNA-damage effector checkpoint kinase 1 Is essential for chromosome segregation and cytokinesis. Proc. Natl. Acad. Sci. USA. 2009;106:5159–5164. doi: 10.1073/pnas.0806671106. PubMed DOI PMC
Sidi S., Sanda T., Kennedy R.D., Hagen A.T., Jette C.A., Hoffmans R., Pascual J., Imamura S., Kishi S., Amatruda J.F., et al. Chk1 suppresses a caspase-2 Apoptotic response to DNA damage that bypasses P53, Bcl-2, and caspase-3. Cell. 2008;133:864–877. doi: 10.1016/j.cell.2008.03.037. PubMed DOI PMC
Mahajan K., Fang B., Koomen J.M., Mahajan N.P. H2B Tyr37 Phosphorylation suppresses expression of replication-dependent core histone genes. Nat. Struct. Mol. Biol. 2012;19:930–937. doi: 10.1038/nsmb.2356. PubMed DOI PMC
Mahajan K., Mahajan N.P. WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet. Tig. 2013;29:394–402. doi: 10.1016/j.tig.2013.02.003. PubMed DOI PMC
Domínguez-Kelly R., Martín Y., Koundrioukoff S., Tanenbaum M.E., Smits V.A.J., Medema R.H., Debatisse M., Freire R. Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. J. Cell Biol. 2011;194:567–579. doi: 10.1083/jcb.201101047. PubMed DOI PMC
Saini P., Li Y., Dobbelstein M. Wee1 Is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072–13087. doi: 10.18632/oncotarget.3865. PubMed DOI PMC
Aarts M., Sharpe R., Garcia-Murillas I., Gevensleben H., Hurd M.S., Shumway S.D., Toniatti C., Ashworth A., Turner N.C. Forced Mitotic Entry of S-Phase Cells as a Therapeutic Strategy Induced by Inhibition of WEE1. Cancer Discov. 2012;2:524–539. doi: 10.1158/2159-8290.CD-11-0320. PubMed DOI
Hamer P.C.D.W., Mir S.E., Noske D., Noorden C.J.F.V., Würdinger T. WEE1 Kinase Targeting Combined with DNA-Damaging Cancer Therapy Catalyzes Mitotic Catastrophe. Clin. Cancer Res. 2011;17:4200–4207. doi: 10.1158/1078-0432.CCR-10-2537. PubMed DOI
Toledo L.I., Murga M., Fernandez-Capetillo O. Targeting ATR and Chk1 Kinases for Cancer Treatment: A New Model for New (and Old) Drugs. Mol. Oncol. 2011;5:368–373. doi: 10.1016/j.molonc.2011.07.002. PubMed DOI PMC
Kwok M., Davies N., Agathanggelou A., Smith E., Petermann E., Yates E., Brown J., Lau A., Stankovic T. Synthetic lethality in chronic lymphocytic leukaemia with DNA damage response defects by targeting the ATR pathway. Lancet. 2015;385:S58. doi: 10.1016/S0140-6736(15)60373-7. PubMed DOI
Geenen J.J.J., Schellens J.H.M. Molecular pathways: Targeting the protein kinase Wee1 in cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:4540–4544. doi: 10.1158/1078-0432.CCR-17-0520. PubMed DOI
Minchom A., Aversa C., Lopez J. Dancing with the DNA damage response: Next-generation anti-cancer therapeutic strategies. Adv. Med. Oncol. 2018;10:1758835918786658. doi: 10.1177/1758835918786658. PubMed DOI PMC
Jackson R.A., Chen E.S. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharm. Ther. 2016;162:69–85. doi: 10.1016/j.pharmthera.2016.01.014. PubMed DOI
Lord C.J., Ashworth A. PARP Inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–1158. doi: 10.1126/science.aam7344. PubMed DOI PMC
Robson M., Im S.-A., Senkus E., Xu B., Domchek S.M., Masuda N., Delaloge S., Li W., Tung N., Armstrong A., et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. [(accessed on 3 July 2020)]; Available online: https://www.nejm.org/doi/10.1056/NEJMoa1706450. PubMed DOI
Roskoski R. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharm. Res. 2016;107:249–275. doi: 10.1016/j.phrs.2016.03.012. PubMed DOI
Vymětalová L., Kryštof V. Potential clinical uses of CDK inhibitors: Lessons from synthetic lethality screens. Med. Res. Rev. 2015;35:1156–1174. doi: 10.1002/med.21354. PubMed DOI
Whittaker S.R., Mallinger A., Workman P., Clarke P.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharm. Ther. 2017;173:83–105. doi: 10.1016/j.pharmthera.2017.02.008. PubMed DOI PMC
Abdel-Fatah T.M.A., Middleton F.K., Arora A., Agarwal D., Chen T., Moseley P.M., Perry C., Doherty R., Chan S., Green A.R., et al. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol. Oncol. 2015;9:569–585. doi: 10.1016/j.molonc.2014.10.013. PubMed DOI PMC
Ruiz S., Mayor-Ruiz C., Lafarga V., Murga M., Vega-Sendino M., Ortega S., Fernandez-Capetillo O. A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol. Cell. 2016;62:307–313. doi: 10.1016/j.molcel.2016.03.006. PubMed DOI PMC
Magnussen G.I., Hellesylt E., Nesland J.M., Trope C.G., Flørenes V.A., Holm R. High Expression of Wee1 Is associated with malignancy in vulvar squamous cell carcinoma patients. BMC Cancer. 2013;13:288. doi: 10.1186/1471-2407-13-288. PubMed DOI PMC
Music D., Dahlrot R.H., Hermansen S.K., Hjelmborg J., de Stricker K., Hansen S., Kristensen B.W. Expression and prognostic value of the WEE1 kinase in gliomas. J. Neurooncol. 2016;127:381–389. doi: 10.1007/s11060-015-2050-4. PubMed DOI
Nghiem P., Park P.K., Kim Y., Vaziri C., Schreiber S.L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. USA. 2001;98:9092–9097. doi: 10.1073/pnas.161281798. PubMed DOI PMC
Schmitt A., Knittel G., Welcker D., Yang T.-P., George J., Nowak M., Leeser U., Büttner R., Perner S., Peifer M., et al. ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res. 2017;77:3040–3056. doi: 10.1158/0008-5472.CAN-16-3398. PubMed DOI
Leijen S., Beijnen J.H., Schellens J.H.M. Abrogation of the G2 checkpoint by inhibition of Wee-1 Kinase results in sensitization of P53-deficient tumor cells to DNA-damaging agents. Curr. Clin. Pharm. 2010;5:186–191. doi: 10.2174/157488410791498824. PubMed DOI
Linden A.A.V., Baturin D., Ford J.B., Fosmire S.P., Gardner L., Korch C., Reigan P., Porter C.C. Inhibition of Wee1 sensitizes cancer cells to antimetabolite chemotherapeutics in vitro and in vivo, independent of P53 functionality. Mol. Cancer. 2013;12:2675–2684. doi: 10.1158/1535-7163.MCT-13-0424. PubMed DOI PMC
Zenvirt S., Kravchenko-Balasha N., Levitzki A. Status of P53 in human cancer cells does not predict efficacy of CHK1 Kinase inhibitors combined with chemotherapeutic agents. Oncogene. 2010;29:6149–6159. doi: 10.1038/onc.2010.343. PubMed DOI
Middleton F.K., Pollard J.R., Curtin N.J. The impact of P53 dysfunction in ATR inhibitor cytotoxicity and chemo- and radiosensitisation. Cancers. 2018;10:275. doi: 10.3390/cancers10080275. PubMed DOI PMC
Mohni K.N., Kavanaugh G.M., Cortez D. ATR Pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res. 2014;74:2835–2845. doi: 10.1158/0008-5472.CAN-13-3229. PubMed DOI PMC
Krajewska M., Fehrmann R.S.N., Schoonen P.M., Labib S., de Vries E.G.E., Franke L., van Vugt M.A.T.M. ATR inhibition preferentially targets homologous recombination-deficient tumor cells. Oncogene. 2015;34:3474–3481. doi: 10.1038/onc.2014.276. PubMed DOI
Middleton F.K., Patterson M.J., Elstob C.J., Fordham S., Herriott A., Wade M.A., McCormick A., Edmondson R., May F.E.B., Allan J.M., et al. Common cancer-associated imbalances in the DNA damage response confer sensitivity to single agent ATR inhibition. Oncotarget. 2015;6:32396–32409. doi: 10.18632/oncotarget.6136. PubMed DOI PMC
Cottini F., Hideshima T., Suzuki R., Tai Y.-T., Bianchini G., Richardson P.G., Anderson K.C., Tonon G. Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discov. 2015;5:972–987. doi: 10.1158/2159-8290.CD-14-0943. PubMed DOI PMC
Chen X., Low K.-H., Alexander A., Jiang Y., Karakas C., Hess K.R., Carey J.P.W., Bui T.N., Vijayaraghavan S., Evans K.W., et al. Cyclin E overexpression sensitizes triple-negative breast cancer to Wee1 kinase inhibition. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:6594–6610. doi: 10.1158/1078-0432.CCR-18-1446. PubMed DOI PMC
Young L.A., O’Connor L.O., de Renty C., Veldman-Jones M.H., Dorval T., Wilson Z., Jones D.R., Lawson D., Odedra R., Maya-Mendoza A., et al. Differential activity of ATR and WEE1 inhibitors in a highly sensitive subpopulation of DLBCL linked to replication stress. Cancer Res. 2019;79:3762–3775. doi: 10.1158/0008-5472.CAN-18-2480. PubMed DOI
Matheson C.J., Backos D.S., Reigan P. Targeting WEE1 kinase in cancer. Trends Pharm. Sci. 2016;37:872–881. doi: 10.1016/j.tips.2016.06.006. PubMed DOI
Rundle S., Bradbury A., Drew Y., Curtin N.J. Targeting the ATR-CHK1 axis in cancer therapy. Cancers. 2017;9:41. doi: 10.3390/cancers9050041. PubMed DOI PMC
Pilié P.G., Tang C., Mills G.B., Yap T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 2019;16:81–104. doi: 10.1038/s41571-018-0114-z. PubMed DOI PMC
Jazayeri A., Falck J., Lukas C., Bartek J., Smith G.C.M., Lukas J., Jackson S.P. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 2006;8:37–45. doi: 10.1038/ncb1337. PubMed DOI
Adams J.D., Garcia C. Women’s health among the Chumash. Evid. Based Complement. Altern. Med. 2006;3:125–131. doi: 10.1093/ecam/nek021. PubMed DOI PMC
Pires I.M., Olcina M.M., Anbalagan S., Pollard J.R., Reaper P.M., Charlton P.A., McKenna W.G., Hammond E.M. Targeting Radiation-resistant hypoxic tumour cells through ATR inhibition. Br. J. Cancer. 2012;107:291–299. doi: 10.1038/bjc.2012.265. PubMed DOI PMC
Hirai H., Iwasawa Y., Okada M., Arai T., Nishibata T., Kobayashi M., Kimura T., Kaneko N., Ohtani J., Yamanaka K., et al. Small-Molecule Inhibition of Wee1 Kinase by MK-1775 selectively sensitizes P53-deficient tumor cells to DNA-damaging agents. Mol. Cancer. 2009;8:2992–3000. doi: 10.1158/1535-7163.MCT-09-0463. PubMed DOI
Home—Clinical Trials Gov. [(accessed on 14 October 2020)]; Available online: https://clinicaltrials.gov/
Knegtel R., Charrier J.-D., Durrant S., Davis C., O’Donnell M., Storck P., MacCormick S., Kay D., Pinder J., Virani A., et al. Rational design of 5-(4-(Isopropylsulfonyl)Phenyl)-3-(3-(4-((Methylamino)Methyl)Phenyl)Isoxazol-5-Yl)Pyrazin-2-Amine (VX-970, M6620): Optimization of Intra- and intermolecular polar interactions of a new ataxia telangiectasia mutated and Rad3-related (ATR) kinase inhibitor. J. Med. Chem. 2019;62:5547–5561. doi: 10.1021/acs.jmedchem.9b00426. PubMed DOI
Foote K.M., Nissink J.W.M., McGuire T., Turner P., Guichard S., Yates J.W.T., Lau A., Blades K., Heathcote D., Odedra R., et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem. 2018;61:9889–9907. doi: 10.1021/acs.jmedchem.8b01187. PubMed DOI
Zenke F.T., Zimmermann A., Dahmen H., Elenbaas B., Pollard J., Reaper P., Bagrodia S., Spilker M.E., Amendt C., Blaukat A. Abstract 369: Antitumor activity of M4344, a potent and selective ATR inhibitor, in monotherapy and combination therapy. Cancer Res. 2019;79:369. doi: 10.1158/1538-7445.AM2019-369. DOI
Luecking U.T., Lefranc J., Wengner A., Wortmann L., Schick H., Briem H., Siemeister G., Lienau P., Schatz C., Bader B., et al. Abstract 983: Identification of Potent, highly selective and orally available ATR Inhibitor BAY 1895344 with favorable PK properties and promising efficacy in monotherapy and combination in preclinical tumor models. Cancer Res. 2017;77:983. doi: 10.1158/1538-7445.AM2017-983. PubMed DOI
Gorecki L., Andrs M., Rezacova M., Korabecny J. Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): Clinical candidate for cancer therapy. Pharm. Ther. 2020:107518. doi: 10.1016/j.pharmthera.2020.107518. PubMed DOI
Bradbury A., Hall S., Curtin N., Drew Y. Targeting ATR as cancer therapy: A New Era for synthetic lethality and synergistic combinations? Pharm. Ther. 2019:107450. doi: 10.1016/j.pharmthera.2019.107450. PubMed DOI
Yap T.A., O’Carrigan B., Penney M.S., Lim J.S., Brown J.S., de Miguel Luken M.J., Tunariu N., Perez-Lopez R., Rodrigues D.N., Riisnaes R., et al. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 2020:JCO.19.02404. doi: 10.1200/JCO.19.02404. PubMed DOI PMC
Thomas A., Redon C.E., Sciuto L., Padiernos E., Ji J., Lee M.-J., Yuno A., Lee S., Zhang Y., Tran L., et al. Phase I study of ATR inhibitor M6620 in combination with topotecan in patients with advanced solid tumors. J. Clin. Oncol. 2017;36:1594–1602. doi: 10.1200/JCO.2017.76.6915. PubMed DOI PMC
Konstantinopoulos P.A., Cheng S.-C., Wahner Hendrickson A.E., Penson R.T., Schumer S.T., Doyle L.A., Lee E.K., Kohn E.C., Duska L.R., Crispens M.A., et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21:957–968. doi: 10.1016/S1470-2045(20)30180-7. PubMed DOI PMC
Dillon M., Guevara J., Mohammed K., Smith S.A., Dean E., McLellan L., Boylan Z., Spicer J., Forster M.D., Harrington K.J. 450PD—A phase I study of ATR inhibitor, AZD6738, as monotherapy in advanced solid tumours (PATRIOT Part A, B) Ann. Oncol. 2019;30:v165–v166. doi: 10.1093/annonc/mdz244.012. DOI
Yap T.A., Krebs M.G., Postel-Vinay S., Bang Y.J., El-Khoueiry A., Abida W., Harrington K., Sundar R., Carter L., Castanon-Alvarez E., et al. 1LBA—Phase I modular study of AZD6738, a novel oral, potent and selective ataxia telangiectasia Rad3-related (ATR) inhibitor in combination (Combo) with carboplatin, olaparib or durvalumab in patients (Pts) with advanced cancers. Eur. J. Cancer. 2016;69:S2. doi: 10.1016/S0959-8049(16)32607-7. DOI
Krebs M.G., Lopez J., El-Khoueiry A., Bang Y.-J., Postel-Vinay S., Abida W., Carter L., Xu W., Im S.-A., Pierce A., et al. Abstract CT026: Phase I study of AZD6738, an inhibitor of ataxia telangiectasia Rad3-related (ATR), in combination with olaparib or durvalumab in patients (Pts) with advanced solid cancers. Cancer Res. 2018;78:CT026. doi: 10.1158/1538-7445.AM2018-CT026. DOI
De Bono J.S., Tan D.S.P., Caldwell R., Terbuch A., Goh B.C., Heong V., Haris N.M., Bashir S., Hong D.S., Meric-Bernstam F., et al. First-in-human trial of the oral ataxia telangiectasia and Rad3-related (ATR) inhibitor BAY 1895344 in patients (Pts) with advanced solid tumors. J. Clin. Oncol. 2019;37:3007. doi: 10.1200/JCO.2019.37.15_suppl.3007. PubMed DOI PMC
Rao Q., Liu M., Tian Y., Wu Z., Hao Y., Song L., Qin Z., Ding C., Wang H.-W., Wang J., et al. Cryo-EM Structure of human ATR-ATRIP complex. Cell Res. 2018;28:143–156. doi: 10.1038/cr.2017.158. PubMed DOI PMC
Bartek J., Mistrik M., Bartkova J. Thresholds of replication stress signaling in cancer development and treatment. Nat. Struct. Mol. Biol. 2012;19:5–7. doi: 10.1038/nsmb.2220. PubMed DOI
Fokas E., Prevo R., Hammond E.M., Brunner T.B., McKenna W.G., Muschel R.J. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat. Rev. 2014;40:109–117. doi: 10.1016/j.ctrv.2013.03.002. PubMed DOI
Pfizer Phase I Study of PF-00477736 With Gemcitabine in Patients with Advanced Solid Malignancies; clinicaltrials.gov. [(accessed on 10 January 2021)];2012 Available online: https://adisinsight.springer.com/trials/700021907.
Sausville E., Lorusso P., Carducci M., Carter J., Quinn M.F., Malburg L., Azad N., Cosgrove D., Knight R., Barker P., et al. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother. Pharm. 2014;73:539–549. doi: 10.1007/s00280-014-2380-5. PubMed DOI PMC
Seto T., Esaki T., Hirai F., Arita S., Nosaki K., Makiyama A., Kometani T., Fujimoto C., Hamatake M., Takeoka H., et al. Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother. Pharm. 2013;72:619–627. doi: 10.1007/s00280-013-2234-6. PubMed DOI
Italiano A., Infante J.R., Shapiro G.I., Moore K.N., LoRusso P.M., Hamilton E., Cousin S., Toulmonde M., Postel-Vinay S., Tolaney S., et al. Phase I study of the checkpoint kinase 1 inhibitor GDC-0575 in combination with gemcitabine in patients with refractory solid tumors. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018;29:1304–1311. doi: 10.1093/annonc/mdy076. PubMed DOI
Daud A.I., Ashworth M.T., Strosberg J., Goldman J.W., Mendelson D., Springett G., Venook A.P., Loechner S., Rosen L.S., Shanahan F., et al. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J. Clin. Oncol. 2015;33:1060–1066. doi: 10.1200/JCO.2014.57.5027. PubMed DOI
Karp J.E., Thomas B.M., Greer J.M., Sorge C., Gore S.D., Pratz K.W., Smith B.D., Flatten K.S., Peterson K., Schneider P., et al. Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012;18:6723–6731. doi: 10.1158/1078-0432.CCR-12-2442. PubMed DOI PMC
Webster J.A., Tibes R., Morris L., Blackford A.L., Litzow M., Patnaik M., Rosner G.L., Gojo I., Kinders R., Wang L., et al. Randomized phase II trial of cytosine arabinoside with and without the CHK1 inhibitor MK-8776 in Relapsed and refractory acute myeloid leukemia. Leuk. Res. 2017;61:108–116. doi: 10.1016/j.leukres.2017.09.005. PubMed DOI PMC
Plummer E.R., Kristeleit R.S., Cojocaru E., Haris N.M., Carter L., Jones R.H., Blagden S.P., Evans T.R.J., Arkenau H.-T., Sarker D., et al. A first-in-human phase I/II trial of SRA737 (a Chk1 Inhibitor) in subjects with advanced cancer. J. Clin. Oncol. 2019;37:3094. doi: 10.1200/JCO.2019.37.15_suppl.3094. DOI
Banerji U., Plummer E.R., Moreno V., Ang J.E., Quinton A., Drew Y., Hernández T., Roda D., Carter L., Navarro A., et al. A phase I/II first-in-human trial of oral SRA737 (a Chk1 Inhibitor) given in combination with low-dose gemcitabine in subjects with advanced cancer. J. Clin. Oncol. 2019;37:3095. doi: 10.1200/JCO.2019.37.15_suppl.3095. DOI
Weiss G.J., Donehower R.C., Iyengar T., Ramanathan R.K., Lewandowski K., Westin E., Hurt K., Hynes S.M., Anthony S.P., McKane S. Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 Mg/m(2) every 21 days in patients with cancer. Investig. New Drugs. 2013;31:136–144. doi: 10.1007/s10637-012-9815-9. PubMed DOI PMC
Calvo E., Braiteh F., Von Hoff D., McWilliams R., Becerra C., Galsky M.D., Jameson G., Lin J., McKane S., Wickremsinhe E.R., et al. Phase I study of CHK1 Inhibitor LY2603618 in combination with gemcitabine in patients with solid tumors. Oncology. 2016;91:251–260. doi: 10.1159/000448621. PubMed DOI
Doi T., Yoshino T., Shitara K., Matsubara N., Fuse N., Naito Y., Uenaka K., Nakamura T., Hynes S.M., Lin A.B. Phase I study of LY2603618, a CHK1 inhibitor, in combination with gemcitabine in Japanese patients with solid tumors. Anticancer. Drugs. 2015;26:1043–1053. doi: 10.1097/CAD.0000000000000278. PubMed DOI
Scagliotti G., Kang J.H., Smith D., Rosenberg R., Park K., Kim S.-W., Su W.-C., Boyd T.E., Richards D.A., Novello S., et al. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Investig. New Drugs. 2016;34:625–635. doi: 10.1007/s10637-016-0368-1. PubMed DOI
Wehler T., Thomas M., Schumann C., Bosch-Barrera J., Viñolas Segarra N., Dickgreber N.J., Dalhoff K., Sebastian M., Corral Jaime J., Alonso M., et al. A randomized, phase 2 evaluation of the CHK1 inhibitor, LY2603618, administered in combination with pemetrexed and cisplatin in patients with advanced nonsquamous non-small cell lung cancer. Lung Cancer Amst. Neth. 2017;108:212–216. doi: 10.1016/j.lungcan.2017.03.001. PubMed DOI
Laquente B., Lopez-Martin J., Richards D., Illerhaus G., Chang D.Z., Kim G., Stella P., Richel D., Szcylik C., Cascinu S., et al. A phase II study to evaluate LY2603618 in combination with gemcitabine in pancreatic cancer patients. BMC Cancer. 2017;17:137. doi: 10.1186/s12885-017-3131-x. PubMed DOI PMC
Hong D.S., Moore K., Patel M., Grant S.C., Burris H.A., William W.N., Jones S., Meric-Bernstam F., Infante J., Golden L., et al. Evaluation of prexasertib, a checkpoint kinase 1 inhibitor, in a phase Ib Study of patients with squamous cell carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:3263–3272. doi: 10.1158/1078-0432.CCR-17-3347. PubMed DOI PMC
Hong D., Infante J., Janku F., Jones S., Nguyen L.M., Burris H., Naing A., Bauer T.M., Piha-Paul S., Johnson F.M., et al. Phase I study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016;34:1764–1771. doi: 10.1200/JCO.2015.64.5788. PubMed DOI PMC
Gatti-Mays M.E., Karzai F.H., Soltani S.N., Zimmer A., Green J.E., Lee M.-J., Trepel J.B., Yuno A., Lipkowitz S., Nair J., et al. A phase II single arm pilot study of the CHK1 inhibitor Prexasertib (LY2606368) in BRCA wild-type, advanced triple-negative breast cancer. Oncologist. 2020 doi: 10.1634/theoncologist.2020-0491. PubMed DOI PMC
Lee J.-M., Nair J., Zimmer A., Lipkowitz S., Annunziata C.M., Merino M.J., Swisher E.M., Harrell M.I., Trepel J.B., Lee M.-J., et al. Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: A first-in-class proof-of-concept phase 2 study. Lancet Oncol. 2018;19:207–215. doi: 10.1016/S1470-2045(18)30009-3. PubMed DOI PMC
Bendell J.C., Bischoff H.G., Hwang J., Reinhardt H.C., Zander T., Wang X., Hynes S., Pitou C., Campbell R., Iversen P., et al. A Phase 1 dose-escalation study of checkpoint kinase 1 (CHK1) inhibitor prexasertib in combination with p38 mitogen-activated protein kinase (P38 MAPK) inhibitor ralimetinib in patients with advanced or metastatic cancer. Investig. New Drugs. 2020;38:1145–1155. doi: 10.1007/s10637-019-00873-6. PubMed DOI
Hirai H., Arai T., Okada M., Nishibata T., Kobayashi M., Sakai N., Imagaki K., Ohtani J., Sakai T., Yoshizumi T., et al. MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol. 2010;9:514–522. doi: 10.4161/cbt.9.7.11115. PubMed DOI
Li J., Wu J., Bao X., Honea N., Xie Y., Kim S., Sparreboom A., Sanai N. Quantitative and mechanistic understanding of AZD1775 penetration across human blood-brain barrier in glioblastoma patients using an IVIVE-PBPK modeling approach. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:7454–7466. doi: 10.1158/1078-0432.CCR-17-0983. PubMed DOI PMC
Sanai N., Li J., Boerner J., Stark K., Wu J., Kim S., Derogatis A., Mehta S., Dhruv H.D., Heilbrun L.K., et al. Phase 0 trial of AZD1775 in first-recurrence glioblastoma patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:3820–3828. doi: 10.1158/1078-0432.CCR-17-3348. PubMed DOI PMC
Do K., Wilsker D., Ji J., Zlott J., Freshwater T., Kinders R.J., Collins J., Chen A.P., Doroshow J.H., Kummar S. Phase I study of single-agent AZD1775 (MK-1775), a Wee1 kinase inhibitor, in patients with refractory solid tumors. J. Clin. Oncol. 2015;33:3409–3415. doi: 10.1200/JCO.2014.60.4009. PubMed DOI PMC
Méndez E., Rodriguez C.P., Kao M.C., Raju S., Diab A., Harbison R.A., Konnick E.Q., Mugundu G.M., Santana-Davila R., Martins R., et al. A phase I clinical trial of AZD1775 in combination with neoadjuvant weekly docetaxel and cisplatin before definitive therapy in head and neck squamous cell carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:2740–2748. doi: 10.1158/1078-0432.CCR-17-3796. PubMed DOI PMC
Leijen S., van Geel R.M.J.M., Pavlick A.C., Tibes R., Rosen L., Razak A.R.A., Lam R., Demuth T., Rose S., Lee M.A., et al. Phase I study evaluating WEE1 inhibitor AZD1775 As monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 2016;34:4371–4380. doi: 10.1200/JCO.2016.67.5991. PubMed DOI PMC
Leijen S., van Geel R.M.J.M., Sonke G.S., de Jong D., Rosenberg E.H., Marchetti S., Pluim D., van Werkhoven E., Rose S., Lee M.A., et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016;34:4354–4361. doi: 10.1200/JCO.2016.67.5942. PubMed DOI
Cuneo K.C., Morgan M.A., Sahai V., Schipper M.J., Parsels L.A., Parsels J.D., Devasia T., Al-Hawaray M., Cho C.S., Nathan H., et al. Dose escalation trial of the wee1 inhibitor adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019;37:2643–2650. doi: 10.1200/JCO.19.00730. PubMed DOI PMC
Walton M.I., Eve P.D., Hayes A., Henley A.T., Valenti M.R., Brandon A.K.D.H., Box G., Boxall K.J., Tall M., Swales K., et al. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-Cell lymphoma. Oncotarget. 2015;7:2329–2342. doi: 10.18632/oncotarget.4919. PubMed DOI PMC
Kaneko Y.S., Watanabe N., Morisaki H., Akita H., Fujimoto A., Tominaga K., Terasawa M., Tachibana A., Ikeda K., Nakanishi M., et al. Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene. 1999;18:3673–3681. doi: 10.1038/sj.onc.1202706. PubMed DOI
Lin Y.-F., Shih H.-Y., Shang Z., Matsunaga S., Chen B.P. DNA-PKcs is required to maintain stability of Chk1 and claspin for optimal replication stress response. Nucleic Acids Res. 2014;42:4463–4473. doi: 10.1093/nar/gku116. PubMed DOI PMC
Buisson R., Boisvert J.L., Benes C.H., Zou L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in Countering replication stress during S phase. Mol. Cell. 2015;59:1011–1024. doi: 10.1016/j.molcel.2015.07.029. PubMed DOI PMC
Yazinski S.A., Zou L. Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annu. Rev. Genet. 2016;50:155–173. doi: 10.1146/annurev-genet-121415-121658. PubMed DOI
Weycker D., Hatfield M., Grossman A., Hanau A., Lonshteyn A., Sharma A., Chandler D. Risk and consequences of chemotherapy-induced thrombocytopenia in US clinical practice. BMC Cancer. 2019;19:151. doi: 10.1186/s12885-019-5354-5. PubMed DOI PMC
Smith R.E. Trends in recommendations for myelosuppressive chemotherapy for the treatment of solid tumors. J. Natl. Compr. Cancer Netw. JNCCN. 2006;4:649–658. doi: 10.6004/jnccn.2006.0056. PubMed DOI
Cairo M.S. Dose reductions and delays: Limitations of myelosuppressive chemotherapy. Oncol. Williston Park N. 2000;14:21–31. PubMed
Koh S.-B., Wallez Y., Dunlop C.R., de Quirós Fernández S.B., Bapiro T.E., Richards F.M., Jodrell D.I. Mechanistic distinctions between CHK1 and WEE1 inhibition guide the scheduling of triple therapy with gemcitabine. Cancer Res. 2018;78:3054–3066. doi: 10.1158/0008-5472.CAN-17-3932. PubMed DOI PMC
Zhu J.-Y., Cuellar R.A., Berndt N., Lee H.E., Olesen S.H., Martin M.P., Jensen J.T., Georg G.I., Schönbrunn E. Structural Basis of wee kinases functionality and inactivation by diverse small molecule inhibitors. J. Med. Chem. 2017;60:7863–7875. doi: 10.1021/acs.jmedchem.7b00996. PubMed DOI PMC
Hustedt N., Álvarez-Quilón A., McEwan A., Yuan J.Y., Cho T., Koob L., Hart T., Durocher D. A consensus set of genetic vulnerabilities to ATR inhibition. Open Biol. 9. 2019:190156. doi: 10.1098/rsob.190156. PubMed DOI PMC
Cleary J.M., Aguirre A.J., Shapiro G.I., D’Andrea A.D. Biomarker-guided development of DNA repair inhibitors. Mol. Cell. 2020;78:1070–1085. doi: 10.1016/j.molcel.2020.04.035. PubMed DOI PMC
Adjei A.A. Pharmacology and mechanism of action of pemetrexed. Clin. Lung Cancer. 2004;5:S51–55. doi: 10.3816/CLC.2004.s.003. PubMed DOI
D’Andrea A.D. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair. 2018;71:172–176. doi: 10.1016/j.dnarep.2018.08.021. PubMed DOI
Francica P., Rottenberg S. Mechanisms of PARP inhibitor resistance in cancer and insights into the DNA damage response. Genome Med. 2018;10:101. doi: 10.1186/s13073-018-0612-8. PubMed DOI PMC
Nair J., Huang T.-T., Murai J., Haynes B., Steeg P.S., Pommier Y., Lee J.-M. Resistance to the CHK1 Inhibitor prexasertib involves functionally distinct CHK1 activities in BRCA wild-type ovarian cancer. Oncogene. 2020 doi: 10.1038/s41388-020-1383-4. PubMed DOI PMC
Lewis C.W., Bukhari A.B., Xiao E.J., Choi W.-S., Smith J.D., Homola E., Mackey J.R., Campbell S.D., Gamper A.M., Chan G.K. Upregulation of Myt1 promotes acquired resistance of cancer cells to Wee1 inhibition. Cancer Res. 2019;79:5971–5985. doi: 10.1158/0008-5472.CAN-19-1961. PubMed DOI
Pollard J., Reaper P., Peek A., Hughes S., Gladwell S., Jones J., Chiu P., Wood M., Tolman C., Johnson M., et al. Abstract 3717: Defining optimal dose schedules for ATR inhibitors in combination with DNA damaging drugs: Informing clinical studies of VX-970, the first-in-class ATR inhibitor. Cancer Res. 2016;76:3717. doi: 10.1158/1538-7445.AM2016-3717. DOI
Garrett M.D., Collins I. Anticancer therapy with checkpoint inhibitors: What, where and when? Trends Pharm. Sci. 2011;32:308–316. doi: 10.1016/j.tips.2011.02.014. PubMed DOI
Marshall M., Barnard D., Diaz B., Feroze F., Kays L., Huber L., Chen V. Evaluation of the antitumor activity of pemetrexed in combination with the Chk1 inhibitor LY2603618. EJC Suppl. 2010;8:67. doi: 10.1016/S1359-6349(10)71906-6. DOI
Toledo L.I., Murga M., Zur R., Soria R., Rodriguez A., Martinez S., Oyarzabal J., Pastor J., Bischoff J.R., Fernandez-Capetillo O. A Cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol. 2011;18:721–727. doi: 10.1038/nsmb.2076. PubMed DOI PMC
Stiff T., O’Driscoll M., Rief N., Iwabuchi K., Löbrich M., Jeggo P.A. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004;64:2390–2396. doi: 10.1158/0008-5472.CAN-03-3207. PubMed DOI
Ward I.M., Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 2001;276:47759–47762. doi: 10.1074/jbc.C100569200. PubMed DOI
Chen T., Middleton F.K., Falcon S., Reaper P.M., Pollard J.R., Curtin N.J. Development of pharmacodynamic biomarkers for ATR inhibitors. Mol. Oncol. 2015;9:463–472. doi: 10.1016/j.molonc.2014.09.012. PubMed DOI PMC