Cytotoxicity induced by Aeromonas schubertii is orchestrated by a unique set of type III secretion system effectors

. 2025 Jun 08 ; 56 (1) : 113. [epub] 20250608

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40484940

Grantová podpora
CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023053 Ministerstvo Školství, Mládeže a Tělovýchovy
LQ200202001 Akademie Věd České Republiky

Odkazy

PubMed 40484940
PubMed Central PMC12147276
DOI 10.1186/s13567-025-01548-2
PII: 10.1186/s13567-025-01548-2
Knihovny.cz E-zdroje

The type III secretion system (T3SS) is an important virulence factor of Gram-negative bacteria, including the genus Aeromonas, which represents a diverse group of aquatic bacteria. One member of the genus, Aeromonas schubertii, is an emerging pathogen in aquaculture, causing high mortality in snakehead fish. Infections are associated with the formation of white nodules in the internal organs, likely resulting from A. schubertii-induced apoptosis and/or necrosis. The present study investigates the type strain A. schubertii ATCC 43700, which encodes two distinct T3SSs located within Aeromonas pathogenicity islands 1 and 2, referred here to as API1 and API2. We analyzed their role in A. schubertii-induced cytotoxicity and identified novel T3SS effector proteins. Infections of HeLa cells revealed that API1, but not API2, mediates cytotoxicity and induces both apoptotic and necrotic cell death. Moreover, proteomic analysis identified seven candidate effectors secreted by the API1 injectisome. These included two previously described effectors, AopH and AopO from A. salmonicida, as well as five novel effectors named AopI, AopJ, AopL, AopT, and AopU, whose injection into host cells was validated using a split luciferase reporter system. Functional characterization showed that AopL, a homolog of Vibrio parahaemolyticus VopQ, induces caspase-3/-7-independent necrosis, while AopI, a homolog of ExoY from Pseudomonas aeruginosa, suppresses caspase-3/-7 activation and necrosis, revealing a pro-survival function. These results demonstrate the critical role of the API1 injectisome in A. schubertii-induced cytotoxicity and provide experimental identification of novel Aeromonas effectors that cooperate to fine-tune host cell cytotoxicity.

Zobrazit více v PubMed

Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) The composition of the zebrafish intestinal microbial community varies across development. ISME J 10:644–654 PubMed DOI PMC

Graf J (1999) Symbiosis of PubMed DOI PMC

Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012-11 PubMed DOI PMC

Beaz-Hidalgo R, Figueras MJ (2013) PubMed DOI

Spadaro S, Berselli A, Marangoni E, Romanello A, Colamussi MV, Ragazzi R, Zardi S, Volta CA (2014) PubMed DOI PMC

Teunis P, Figueras MJ (2016) Reassessment of the enteropathogenicity of mesophilic PubMed DOI PMC

Schwartz K, Borowiak M, Strauch E, Deneke C, Richter MH, German Aeromonas Study G (2024) Emerging PubMed DOI PMC

Janda JM, Abbott SL (2010) The genus PubMed DOI PMC

Fernández-Bravo A, Figueras MJ (2020) An update on the genus PubMed DOI PMC

Kloub L, Gosselin S, Fullmer M, Graf J, Gogarten JP, Bansal MS (2021) Systematic detection of large-scale multigene horizontal transfer in prokaryotes. Mol Biol Evol 38:2639–2659 PubMed DOI PMC

Talagrand-Reboul E, Colston SM, Graf J, Lamy B, Jumas-Bilak E (2020) Comparative and evolutionary genomics of isolates provide insight into the pathoadaptation of PubMed DOI PMC

Lamy B, Baron S, Barraud O (2022) PubMed DOI

Goncalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho E, Coelho L (2019) The genus PubMed DOI

Rahmatelahi H, El-Matbouli M, Menanteau-Ledouble S (2021) Delivering the pain: an overview of the type III secretion system with special consideration for aquatic pathogens. Vet Res 52:146 PubMed DOI PMC

Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433 PubMed DOI PMC

Troisfontaines P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology (Bethesda) 20:326–339 PubMed

Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20:535–549 PubMed DOI PMC

Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR (2016) Virulence factors of PubMed DOI PMC

Burr SE, Stuber K, Wahli T, Frey J (2002) Evidence for a type III secretion system in PubMed DOI PMC

Stuber K, Burr SE, Braun M, Wahli T, Frey J (2003) Type III secretion genes in PubMed DOI PMC

Braun M, Stuber K, Schlatter Y, Wahli T, Kuhnert P, Frey J (2002) Characterization of an ADP-ribosyltransferase toxin (AexT) from PubMed DOI PMC

Fehr D, Burr SE, Gibert M, d’Alayer J, Frey J, Popoff MR (2007) PubMed DOI

Dallaire-Dufresne S, Barbeau X, Sarty D, Tanaka KH, Denoncourt AM, Lague P, Reith ME, Charette SJ (2013) PubMed DOI

Fehr D, Casanova C, Liverman A, Blazkova H, Orth K, Dobbelaere D, Frey J, Burr SE (2006) AopP, a type III effector protein of PubMed DOI

Vanden Bergh P, Heller M, Braga-Lagache S, Frey J (2013) The PubMed DOI PMC

Vanden Bergh P, Frey J (2014) PubMed DOI PMC

Yu HB, Rao PS, Lee HC, Vilches S, Merino S, Tomas JM, Leung KY (2004) A type III secretion system is required for PubMed DOI PMC

Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP, Leung KY (2005) Identification and characterization of putative virulence genes and gene clusters in PubMed DOI PMC

Vilches S, Urgell C, Merino S, Chacon MR, Soler L, Castro-Escarpulli G, Figueras MJ, Tomas JM (2004) Complete type III secretion system of a mesophilic PubMed DOI PMC

Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK (2005) The type III secretion system and cytotoxic enterotoxin alter the virulence of PubMed DOI PMC

Vilches S, Wilhelms M, Yu HB, Leung KY, Tomas JM, Merino S (2008) PubMed DOI

Sha J, Wang SF, Suarez G, Sierra JC, Fadl AA, Erova TE, Foltz SM, Khajanchi BK, Silver A, Graf J, Schein CH, Chopra AK (2007) Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of PubMed DOI

Sierra JC, Suarez G, Sha J, Foltz SM, Popov VL, Galindo CL, Garner HR, Chopra AK (2007) Biological characterization of a new type III secretion system effector from a clinical isolate of PubMed DOI

Sierra JC, Suarez G, Sha J, Baze WB, Foltz SM, Chopra AK (2010) Unraveling the mechanism of action of a new type III secretion system effector AexU from PubMed DOI PMC

Rangel LT, Marden J, Colston S, Setubal JC, Graf J, Gogarten JP (2019) Identification and characterization of putative PubMed DOI PMC

Sangpo P, Thitamadee S, Dong HT, Senapin S (2020) PubMed DOI

Liu C, Chang OQ, Zhang DF, Li KB, Wang F, Lin MH, Shi CB, Jiang L, Wang Q, Bergmann SM (2018) PubMed DOI

Pinpimai K, Angsujinda K, Thitiphuree T, Kitiyodom S, Chokmangmeepisarn P, Pirarat N (2022) Draft genome sequences of PubMed DOI PMC

Liu JY, Li AH (2012) First case of PubMed DOI

He H, Huang X, Wen C, Liu C, Jiang B, Huang Y, Su Y, Li W (2024) A novel defensin-like peptide C-13326 possesses protective effect against multidrug-resistant PubMed DOI

Luo X, Liao G, Fu X, Liang H, Niu Y, Lin Q, Liu L, Ma B, Li N (2024) A novel and effective therapeutic method for treating PubMed DOI PMC

Liu C, Ma J, Zhang D, Li W, Jiang B, Qin Z, Su Y, Lin L, Wang Q (2021) Immune response and apoptosis-related pathways induced by PubMed DOI PMC

Chen YF, Liang RS, Zhuo XL, Wu XT, Zou JX (2012) Isolation and characterization of PubMed DOI

Hickman-Brenner FW, Fanning GR, Arduino MJ, Brenner DJ, Farmer JJ 3rd (1988) PubMed DOI PMC

Abbott SL, Seli LS, Catino M Jr, Hartley MA, Janda JM (1998) Misidentification of unusual PubMed DOI PMC

Liu L, Li N, Zhang D, Fu X, Shi C, Lin Q (2016) Complete genome sequence of the type strain of PubMed PMC

Wiles TJ, Wall ES, Schlomann BH, Hay EA, Parthasarathy R, Guillemin K (2018) Modernized tools for streamlined genetic manipulation and comparative study of wild and diverse proteobacterial lineages. mBio 9:e01877-18 PubMed DOI PMC

Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345 PubMed DOI

Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J (2023) BopN is a gatekeeper of the PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682 PubMed DOI PMC

Novak J, Jurnecka D, Linhartova I, Holubova J, Stanek O, Stipl D, Dienstbier A, Vecerek B, Azevedo N, Provaznik J, Benes V, Sebo P (2020) A mutation upstream of the PubMed DOI PMC

Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, John NS, Prakash A, Walzer M, Wang S, Vizcaino JA (2025) The PRIDE database at 20 years: 2025 update. Nucleic Acids Res 53:D543–D553 PubMed DOI PMC

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027 PubMed DOI PMC

Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287 PubMed DOI

Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191 PubMed DOI PMC

Vilches S, Jimenez N, Tomas JM, Merino S (2009) PubMed DOI PMC

Forsberg A, Bolin I, Norlander L, Wolf-Watz H (1987) Molecular cloning and expression of calcium-regulated, plasmid-coded proteins of PubMed DOI

Westerhausen S, Nowak M, Torres-Vargas CE, Bilitewski U, Bohn E, Grin I, Wagner S (2020) A NanoLuc luciferase-based assay enabling the real-time analysis of protein secretion and injection by bacterial type III secretion systems. Mol Microbiol 113:1240–1254 PubMed DOI

Yahr TL, Frank DW (1994) Transcriptional organization of the trans-regulatory locus which controls exoenzyme S synthesis in PubMed DOI PMC

Dasgupta N, Lykken GL, Wolfgang MC, Yahr TL (2004) A novel anti-anti-activator mechanism regulates expression of the PubMed DOI

Deane JE, Abrusci P, Johnson S, Lea SM (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075 PubMed DOI PMC

Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF (2005) A genome-wide screen identifies a PubMed DOI

Zmuda M, Sedlackova E, Pravdova B, Cizkova M, Dalecka M, Cerny O, Allsop TR, Grousl T, Malcova I, Kamanova J (2024) The PubMed DOI PMC

Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Nunez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernandez LA, Rodriguez-Paton A, Choudhary JS, Frankel G (2021) Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 371:eabc9531 PubMed DOI

Burdette DL, Seemann J, Orth K (2009) PubMed DOI PMC

Sreelatha A, Bennett TL, Zheng H, Jiang QX, Orth K, Starai VJ (2013) PubMed DOI PMC

Nguyen AQ, Shimohata T, Hatayama S, Tentaku A, Kido J, Bui TMH, Uebanso T, Mawatari K, Takahashi A (2020) Type III secretion effector VopQ of PubMed DOI PMC

Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, Orth K (2020) A distinct inhibitory mechanism of the V-ATPase by PubMed DOI

Belyy A, Raoux-Barbot D, Saveanu C, Namane A, Ogryzko V, Worpenberg L, David V, Henriot V, Fellous S, Merrifield C, Assayag E, Ladant D, Renault L, Mechold U (2016) Actin activates PubMed DOI PMC

Silistre H, Raoux-Barbot D, Mancinelli F, Sangouard F, Dupin A, Belyy A, Deruelle V, Renault L, Ladant D, Touqui L, Mechold U (2021) Prevalence of ExoY activity in PubMed DOI PMC

Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L (2022) Bacterial nucleotidyl cyclases activated by calmodulin or actin in host cells: enzyme specificities and cytotoxicity mechanisms identified to date. Int J Mol Sci 23:6743 PubMed DOI PMC

Litvak Y, Selinger Z (2007) PubMed DOI PMC

Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315:1000–1003 PubMed DOI

Chambers KA, Abularrage NS, Scheck RA (2018) Selectivity within a family of bacterial phosphothreonine lyases. Biochemistry 57:3790–3796 PubMed DOI

Liu C, Guo YM, Cao JZ, Zhang DF, Chang OQ, Li K, Wang F, Shi CB, Jiang L, Wang Q, Lin L (2019) Detection and quantification of PubMed DOI

Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW (2010) pH sensing by intracellular PubMed DOI PMC

dos Santos PA, Pereira AC, Ferreira AF, de Mattos Alves MA, Rosa AC, Freitas-Almeida AC (2015) Adhesion, invasion, intracellular survival and cytotoxic activity of strains of PubMed DOI

Rahman M, Abd H, Romling U, Sandstrom G, Mollby R (2008) PubMed DOI

Yousuf FA, Siddiqui R, Khan NA (2013) PubMed DOI PMC

Delafont V, Perraud E, Brunet K, Maisonneuve E, Kaaki S, Rodier MH (2019) PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...