Cytotoxicity induced by Aeromonas schubertii is orchestrated by a unique set of type III secretion system effectors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004597
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023053
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ200202001
Akademie Věd České Republiky
PubMed
40484940
PubMed Central
PMC12147276
DOI
10.1186/s13567-025-01548-2
PII: 10.1186/s13567-025-01548-2
Knihovny.cz E-zdroje
- Klíčová slova
- Aeromonas, Aeromonas schubertii, ExoY, VopQ, cytotoxicity, type III secretion system effectors,
- MeSH
- Aeromonas * genetika patogenita fyziologie MeSH
- apoptóza MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- faktory virulence * metabolismus genetika MeSH
- gramnegativní bakteriální infekce * mikrobiologie veterinární MeSH
- HeLa buňky MeSH
- lidé MeSH
- nemoci ryb * mikrobiologie MeSH
- sekreční systém typu III * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- faktory virulence * MeSH
- sekreční systém typu III * MeSH
The type III secretion system (T3SS) is an important virulence factor of Gram-negative bacteria, including the genus Aeromonas, which represents a diverse group of aquatic bacteria. One member of the genus, Aeromonas schubertii, is an emerging pathogen in aquaculture, causing high mortality in snakehead fish. Infections are associated with the formation of white nodules in the internal organs, likely resulting from A. schubertii-induced apoptosis and/or necrosis. The present study investigates the type strain A. schubertii ATCC 43700, which encodes two distinct T3SSs located within Aeromonas pathogenicity islands 1 and 2, referred here to as API1 and API2. We analyzed their role in A. schubertii-induced cytotoxicity and identified novel T3SS effector proteins. Infections of HeLa cells revealed that API1, but not API2, mediates cytotoxicity and induces both apoptotic and necrotic cell death. Moreover, proteomic analysis identified seven candidate effectors secreted by the API1 injectisome. These included two previously described effectors, AopH and AopO from A. salmonicida, as well as five novel effectors named AopI, AopJ, AopL, AopT, and AopU, whose injection into host cells was validated using a split luciferase reporter system. Functional characterization showed that AopL, a homolog of Vibrio parahaemolyticus VopQ, induces caspase-3/-7-independent necrosis, while AopI, a homolog of ExoY from Pseudomonas aeruginosa, suppresses caspase-3/-7 activation and necrosis, revealing a pro-survival function. These results demonstrate the critical role of the API1 injectisome in A. schubertii-induced cytotoxicity and provide experimental identification of novel Aeromonas effectors that cooperate to fine-tune host cell cytotoxicity.
Zobrazit více v PubMed
Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) The composition of the zebrafish intestinal microbial community varies across development. ISME J 10:644–654 PubMed PMC
Graf J (1999) Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations. Infect Immun 67:1–7 PubMed PMC
Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012-11 PubMed PMC
Beaz-Hidalgo R, Figueras MJ (2013) Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis 36:371–388 PubMed
Spadaro S, Berselli A, Marangoni E, Romanello A, Colamussi MV, Ragazzi R, Zardi S, Volta CA (2014) Aeromonas sobria necrotizing fasciitis and sepsis in an immunocompromised patient: a case report and review of the literature. J Med Case Rep 8:315 PubMed PMC
Teunis P, Figueras MJ (2016) Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front Microbiol 7:1395 PubMed PMC
Schwartz K, Borowiak M, Strauch E, Deneke C, Richter MH, German Aeromonas Study G (2024) Emerging Aeromonas spp. infections in Europe: characterization of human clinical isolates from German patients. Front Microbiol 15:1498180 PubMed PMC
Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73 PubMed PMC
Fernández-Bravo A, Figueras MJ (2020) An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms 8:129 PubMed PMC
Kloub L, Gosselin S, Fullmer M, Graf J, Gogarten JP, Bansal MS (2021) Systematic detection of large-scale multigene horizontal transfer in prokaryotes. Mol Biol Evol 38:2639–2659 PubMed PMC
Talagrand-Reboul E, Colston SM, Graf J, Lamy B, Jumas-Bilak E (2020) Comparative and evolutionary genomics of isolates provide insight into the pathoadaptation of Aeromonas. Genome Biol Evol 12:535–552 PubMed PMC
Lamy B, Baron S, Barraud O (2022) Aeromonas: the multifaceted middleman in the One Health world. Curr Opin Microbiol 65:24–32 PubMed
Goncalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho E, Coelho L (2019) The genus Aeromonas: a general approach. Microb Pathog 130:81–94 PubMed
Rahmatelahi H, El-Matbouli M, Menanteau-Ledouble S (2021) Delivering the pain: an overview of the type III secretion system with special consideration for aquatic pathogens. Vet Res 52:146 PubMed PMC
Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433 PubMed PMC
Troisfontaines P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology (Bethesda) 20:326–339 PubMed
Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20:535–549 PubMed PMC
Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR (2016) Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol 7:1337 PubMed PMC
Burr SE, Stuber K, Wahli T, Frey J (2002) Evidence for a type III secretion system in Aeromonas salmonicida subsp. salmonicida. J Bacteriol 184:5966–5970 PubMed PMC
Stuber K, Burr SE, Braun M, Wahli T, Frey J (2003) Type III secretion genes in Aeromonas salmonicida subsp salmonicida are located on a large thermolabile virulence plasmid. J Clin Microbiol 41:3854–3856 PubMed PMC
Braun M, Stuber K, Schlatter Y, Wahli T, Kuhnert P, Frey J (2002) Characterization of an ADP-ribosyltransferase toxin (AexT) from Aeromonas salmonicida subsp. salmonicida. J Bacteriol 184:1851–1858 PubMed PMC
Fehr D, Burr SE, Gibert M, d’Alayer J, Frey J, Popoff MR (2007) Aeromonas exoenzyme T of Aeromonas salmonicida is a bifunctional protein that targets the host cytoskeleton. J Biol Chem 282:28843–28852 PubMed
Dallaire-Dufresne S, Barbeau X, Sarty D, Tanaka KH, Denoncourt AM, Lague P, Reith ME, Charette SJ (2013) Aeromonas salmonicida Ati2 is an effector protein of the type three secretion system. Microbiology 159:1937–1945 PubMed
Fehr D, Casanova C, Liverman A, Blazkova H, Orth K, Dobbelaere D, Frey J, Burr SE (2006) AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-kappaB signalling pathway. Microbiology 152:2809–2818 PubMed
Vanden Bergh P, Heller M, Braga-Lagache S, Frey J (2013) The Aeromonas salmonicida subsp. salmonicida exoproteome: determination of the complete repertoire of Type-Three Secretion System effectors and identification of other virulence factors. Proteome Sci 11:42 PubMed PMC
Vanden Bergh P, Frey J (2014) Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol 7:381–400 PubMed PMC
Yu HB, Rao PS, Lee HC, Vilches S, Merino S, Tomas JM, Leung KY (2004) A type III secretion system is required for Aeromonas hydrophila AH-1 pathogenesis. Infect Immun 72:1248–1256 PubMed PMC
Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP, Leung KY (2005) Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Appl Environ Microbiol 71:4469–4477 PubMed PMC
Vilches S, Urgell C, Merino S, Chacon MR, Soler L, Castro-Escarpulli G, Figueras MJ, Tomas JM (2004) Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol 70:6914–6919 PubMed PMC
Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK (2005) The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infect Immun 73:6446–6457 PubMed PMC
Vilches S, Wilhelms M, Yu HB, Leung KY, Tomas JM, Merino S (2008) Aeromonas hydrophila AH-3 AexT is an ADP-ribosylating toxin secreted through the type III secretion system. Microb Pathog 44:1–12 PubMed
Sha J, Wang SF, Suarez G, Sierra JC, Fadl AA, Erova TE, Foltz SM, Khajanchi BK, Silver A, Graf J, Schein CH, Chopra AK (2007) Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila—part I. Microb Pathog 43:127–146 PubMed
Sierra JC, Suarez G, Sha J, Foltz SM, Popov VL, Galindo CL, Garner HR, Chopra AK (2007) Biological characterization of a new type III secretion system effector from a clinical isolate of Aeromonas hydrophila—part II. Microb Pathog 43:147–160 PubMed
Sierra JC, Suarez G, Sha J, Baze WB, Foltz SM, Chopra AK (2010) Unraveling the mechanism of action of a new type III secretion system effector AexU from Aeromonas hydrophila. Microb Pathog 49:122–134 PubMed PMC
Rangel LT, Marden J, Colston S, Setubal JC, Graf J, Gogarten JP (2019) Identification and characterization of putative Aeromonas spp. T3SS effectors. PLoS One 14:e0214035 PubMed PMC
Sangpo P, Thitamadee S, Dong HT, Senapin S (2020) Aeromonas schubertii, a novel bacterium recovered from AHPND affected farm is lethal to whiteleg shrimp. Penaeus vannamei Microb Pathog 149:104501 PubMed
Liu C, Chang OQ, Zhang DF, Li KB, Wang F, Lin MH, Shi CB, Jiang L, Wang Q, Bergmann SM (2018) Aeromonas shuberti as a cause of multi-organ necrosis in internal organs of Nile tilapia, Oreochromis niloticus. J Fish Dis 41:1529–1538 PubMed
Pinpimai K, Angsujinda K, Thitiphuree T, Kitiyodom S, Chokmangmeepisarn P, Pirarat N (2022) Draft genome sequences of Aeromonas schubertii strains isolated from Asian seabass from Thailand. Microbiol Resour Announc 11:e0100721 PubMed PMC
Liu JY, Li AH (2012) First case of Aeromonas schubertii infection in the freshwater cultured snakehead fish, Ophiocephalus argus (Cantor), in China. J Fish Dis 35:335–342 PubMed
He H, Huang X, Wen C, Liu C, Jiang B, Huang Y, Su Y, Li W (2024) A novel defensin-like peptide C-13326 possesses protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). J Fish Dis 47:e13922 PubMed
Luo X, Liao G, Fu X, Liang H, Niu Y, Lin Q, Liu L, Ma B, Li N (2024) A novel and effective therapeutic method for treating Aeromonas schubertii infection in Channa maculata. Animals 14:957 PubMed PMC
Liu C, Ma J, Zhang D, Li W, Jiang B, Qin Z, Su Y, Lin L, Wang Q (2021) Immune response and apoptosis-related pathways induced by Aeromonas schubertii infection of hybrid snakehead (Channa maculata ♀ × Channa argus ♂). Pathogens 10:997 PubMed PMC
Chen YF, Liang RS, Zhuo XL, Wu XT, Zou JX (2012) Isolation and characterization of Aeromonas schubertii from diseased snakehead, Channa maculata (Lacepede). J Fish Dis 35:421–430 PubMed
Hickman-Brenner FW, Fanning GR, Arduino MJ, Brenner DJ, Farmer JJ 3rd (1988) Aeromonas schubertii, a new mannitol-negative species found in human clinical specimens. J Clin Microbiol 26:1561–1564 PubMed PMC
Abbott SL, Seli LS, Catino M Jr, Hartley MA, Janda JM (1998) Misidentification of unusual Aeromonas species as members of the genus Vibrio: a continuing problem. J Clin Microbiol 36:1103–1104 PubMed PMC
Liu L, Li N, Zhang D, Fu X, Shi C, Lin Q (2016) Complete genome sequence of the type strain of Aeromonas schubertii, ATCC 43700. Genome Announc 4:e00012-16 PubMed PMC
Wiles TJ, Wall ES, Schlomann BH, Hay EA, Parthasarathy R, Guillemin K (2018) Modernized tools for streamlined genetic manipulation and comparative study of wild and diverse proteobacterial lineages. mBio 9:e01877-18 PubMed PMC
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345 PubMed
Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J (2023) BopN is a gatekeeper of the Bordetella type III secretion system. Microbiol Spectr 11:e0411222 PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682 PubMed PMC
Novak J, Jurnecka D, Linhartova I, Holubova J, Stanek O, Stipl D, Dienstbier A, Vecerek B, Azevedo N, Provaznik J, Benes V, Sebo P (2020) A mutation upstream of the rplN-rpsD ribosomal operon downregulates Bordetella pertussis virulence factor production without compromising bacterial survival within human macrophages. mSystems 5:e00612-20 PubMed PMC
Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, John NS, Prakash A, Walzer M, Wang S, Vizcaino JA (2025) The PRIDE database at 20 years: 2025 update. Nucleic Acids Res 53:D543–D553 PubMed PMC
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027 PubMed PMC
Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287 PubMed
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191 PubMed PMC
Vilches S, Jimenez N, Tomas JM, Merino S (2009) Aeromonas hydrophila AH-3 type III secretion system expression and regulatory network. Appl Environ Microbiol 75:6382–6392 PubMed PMC
Forsberg A, Bolin I, Norlander L, Wolf-Watz H (1987) Molecular cloning and expression of calcium-regulated, plasmid-coded proteins of Y. pseudotuberculosis. Microb Pathog 2:123–137 PubMed
Westerhausen S, Nowak M, Torres-Vargas CE, Bilitewski U, Bohn E, Grin I, Wagner S (2020) A NanoLuc luciferase-based assay enabling the real-time analysis of protein secretion and injection by bacterial type III secretion systems. Mol Microbiol 113:1240–1254 PubMed
Yahr TL, Frank DW (1994) Transcriptional organization of the trans-regulatory locus which controls exoenzyme S synthesis in Pseudomonas aeruginosa. J Bacteriol 176:3832–3838 PubMed PMC
Dasgupta N, Lykken GL, Wolfgang MC, Yahr TL (2004) A novel anti-anti-activator mechanism regulates expression of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 53:297–308 PubMed
Deane JE, Abrusci P, Johnson S, Lea SM (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67:1065–1075 PubMed PMC
Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF (2005) A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 58:267–279 PubMed
Zmuda M, Sedlackova E, Pravdova B, Cizkova M, Dalecka M, Cerny O, Allsop TR, Grousl T, Malcova I, Kamanova J (2024) The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis. mBio 15:e0192524 PubMed PMC
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Nunez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernandez LA, Rodriguez-Paton A, Choudhary JS, Frankel G (2021) Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 371:eabc9531 PubMed
Burdette DL, Seemann J, Orth K (2009) Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 73:639–649 PubMed PMC
Sreelatha A, Bennett TL, Zheng H, Jiang QX, Orth K, Starai VJ (2013) Vibrio effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux. Proc Natl Acad Sci U S A 110:11559–11564 PubMed PMC
Nguyen AQ, Shimohata T, Hatayama S, Tentaku A, Kido J, Bui TMH, Uebanso T, Mawatari K, Takahashi A (2020) Type III secretion effector VopQ of Vibrio parahaemolyticus modulates central carbon metabolism in epithelial cells. mSphere 5:e00960-19 PubMed PMC
Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, Orth K (2020) A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nat Struct Mol Biol 27:589–597 PubMed
Belyy A, Raoux-Barbot D, Saveanu C, Namane A, Ogryzko V, Worpenberg L, David V, Henriot V, Fellous S, Merrifield C, Assayag E, Ladant D, Renault L, Mechold U (2016) Actin activates Pseudomonas aeruginosa ExoY nucleotidyl cyclase toxin and ExoY-like effector domains from MARTX toxins. Nat Commun 7:13582 PubMed PMC
Silistre H, Raoux-Barbot D, Mancinelli F, Sangouard F, Dupin A, Belyy A, Deruelle V, Renault L, Ladant D, Touqui L, Mechold U (2021) Prevalence of ExoY activity in Pseudomonas aeruginosa reference panel strains and impact on cytotoxicity in epithelial cells. Front Microbiol 12:666097 PubMed PMC
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L (2022) Bacterial nucleotidyl cyclases activated by calmodulin or actin in host cells: enzyme specificities and cytotoxicity mechanisms identified to date. Int J Mol Sci 23:6743 PubMed PMC
Litvak Y, Selinger Z (2007) Aeromonas salmonicida toxin AexT has a Rho family GTPase-activating protein domain. J Bacteriol 189:2558–2560 PubMed PMC
Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315:1000–1003 PubMed
Chambers KA, Abularrage NS, Scheck RA (2018) Selectivity within a family of bacterial phosphothreonine lyases. Biochemistry 57:3790–3796 PubMed
Liu C, Guo YM, Cao JZ, Zhang DF, Chang OQ, Li K, Wang F, Shi CB, Jiang L, Wang Q, Lin L (2019) Detection and quantification of Aeromonas schubertii in Channa maculata by TaqMan MGB probe fluorescence real-time quantitative PCR. J Fish Dis 42:109–117 PubMed
Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW (2010) pH sensing by intracellular Salmonella induces effector translocation. Science 328:1040–1043 PubMed PMC
dos Santos PA, Pereira AC, Ferreira AF, de Mattos Alves MA, Rosa AC, Freitas-Almeida AC (2015) Adhesion, invasion, intracellular survival and cytotoxic activity of strains of Aeromonas spp. in HEp-2, Caco-2 and T-84 cell lines. Antonie Van Leeuwenhoek 107:1225–1236 PubMed
Rahman M, Abd H, Romling U, Sandstrom G, Mollby R (2008) Aeromonas–Acanthamoeba interaction and early shift to a viable but nonculturable state of Aeromonas by Acanthamoeba. J Appl Microbiol 104:1449–1457 PubMed
Yousuf FA, Siddiqui R, Khan NA (2013) Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasit Vectors 6:169 PubMed PMC
Delafont V, Perraud E, Brunet K, Maisonneuve E, Kaaki S, Rodier MH (2019) Vermamoeba vermiformis in hospital network: a benefit for Aeromonas hydrophila. Parasitol Res 118:3191–3194 PubMed