Lipid and brain volumetric measures in multiple sclerosis patients: findings from a large observational study
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články, pozorovací studie
Grantová podpora
64165
RVO VFN
PubMed
39455532
PubMed Central
PMC11614926
DOI
10.1007/s13760-024-02676-w
PII: 10.1007/s13760-024-02676-w
Knihovny.cz E-zdroje
- Klíčová slova
- Brain atrophy, Cholesterol, HDL, LDL, Lesion volume, Lipid, MRI, Multiple sclerosis,
- MeSH
- cholesterol krev MeSH
- dospělí MeSH
- HDL-cholesterol * krev MeSH
- kohortové studie MeSH
- LDL-cholesterol krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie * MeSH
- mozek * diagnostické zobrazování patologie MeSH
- průřezové studie MeSH
- roztroušená skleróza * diagnostické zobrazování krev patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- cholesterol MeSH
- HDL-cholesterol * MeSH
- LDL-cholesterol MeSH
OBJECTIVES: This study aimed to investigate relationships between cholesterol profile, brain volumetric MRI, and clinical measures in a large observational cohort of multiple sclerosis (MS) patients. MATERIALS AND METHODS: We included 1.505 patients with 4.966 time points including complete lipid, clinical, and imaging data. The time among lipid, brain MRI and clinical measures was under 90 days. Cross-sectional statistical analysis at baseline was performed using an adjusted linear regression and analysis of longitudinal lipid and MRI measures data was performed using adjusted linear mixed models. RESULTS: We found associations between higher high-density lipoprotein cholesterol (HDL-C) and lower brain parenchymal fraction (BPF) at cross-sectional analysis at baseline (B = -0.43, CI 95%: -0.73, -0.12, p = 0.005), as well as in longitudinal analysis over follow-up (B = -0.32 ± 0.072, χ2 = 36.6; p = < 0.001). Higher HDL-C was also associated with higher T2-lesion volume in longitudinal analysis (B = 0.11 ± 0.023; χ2 = 23.04; p = < 0.001). We observed a weak negative association between low-density lipoprotein cholesterol (LDL-C) levels and BPF at baseline (B = -0.26, CI 95%: -0.4, -0.11, p = < 0.001) as well as in longitudinal analysis (B = -0.06 ± 0.03, χ2 = 4.46; p = 0.03). T2-LV did not show an association with LDL-C. We did not find any association between lipid measures and disability. The effect of lipid levels on MRI measures and disability was minimal (Cohen f2 < 0.02). CONCLUSIONS: Our results contradict the previously described exclusively positive effect of HDL-C on brain atrophy in patients with MS. Higher LDL-C was weakly associated with higher brain atrophy but not with higher lesion burden.
Zobrazit více v PubMed
1. Alfredsson, L. and T. Olsson, Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb Perspect Med, 2019. 9(4). PubMed PMC
2. Orth, M. and S. Bellosta, Cholesterol: its regulation and role in central nervous system disorders. Cholesterol, 2012. 2012: p. 292598. PubMed PMC
3. Erum, U., T. Ahsan, and D. Khowaja, Lipid abnormalities in patients with Rheumatoid Arthritis. Pak J Med Sci, 2017. 33(1): p. 227–230. PubMed PMC
4. Tselios, K., C. Koumaras, D.D. Gladman, and M.B. Urowitz, Dyslipidemia in systemic lupus erythematosus: just another comorbidity? Semin Arthritis Rheum, 2016. 45(5): p. 604 − 10. PubMed
5. Palladino, R., R.A. Marrie, A. Majeed, and J. Chataway, Management of vascular risk in people with multiple sclerosis at the time of diagnosis in England: A population-based study. Mult Scler, 2023: p. 13524585231164296. PubMed PMC
6. Lorincz, B., et al., The role of cholesterol metabolism in multiple sclerosis: From molecular pathophysiology to radiological and clinical disease activity. Autoimmun Rev, 2022. 21(6): p. 103088. PubMed
7. Zhornitsky, S., et al., Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes. Mult Scler Relat Disord, 2016. 5: p. 53–65. PubMed
8. Murali, N., et al., Cholesterol and neurodegeneration: longitudinal changes in serum cholesterol biomarkers are associated with new lesions and gray matter atrophy in multiple sclerosis over 5 years of follow-up. Eur J Neurol, 2020. 27(1): p. 188-e4. PubMed
9. Uher, T., et al., Serum lipid profile changes predict neurodegeneration in interferon-beta1a-treated multiple sclerosis patients. J Lipid Res, 2017. 58(2): p. 403–411. PubMed PMC
10. Weinstock-Guttman, B., et al., Lipid profiles are associated with lesion formation over 24 months in interferon-beta treated patients following the first demyelinating event. J Neurol Neurosurg Psychiatry, 2013. 84(11): p. 1186-91. PubMed
11. McComb, M., et al., Apolipoproteins AI and E are associated with neuroaxonal injury to gray matter in multiple sclerosis. Mult Scler Relat Disord, 2020. 45: p. 102389. PubMed
12. Thompson, A.J., et al., Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol, 2018. 17(2): p. 162–173. PubMed
13. Uher, T., et al., A Novel Semiautomated Pipeline to Measure Brain Atrophy and Lesion Burden in Multiple Sclerosis: A Long-Term Comparative Study. J Neuroimaging, 2017. 27(6): p. 620–629. PubMed
14. Langsted, A. and B.G. Nordestgaard, Nonfasting versus fasting lipid profile for cardiovascular risk prediction. Pathology, 2019. 51(2): p. 131–141. PubMed
15. Selya, A.S., et al., A Practical Guide to Calculating Cohen’s f(2), a Measure of Local Effect Size, from PROC MIXED. Front Psychol, 2012. 3: p. 111. PubMed PMC
16. Barter, P.J., et al., Antiinflammatory properties of HDL. Circ Res, 2004. 95(8): p. 764 − 72. PubMed
17. Weinstock-Guttman, B., et al., Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation, 2011. 8: p. 127. PubMed PMC
18. Fellows, K., et al., Protective associations of HDL with blood-brain barrier injury in multiple sclerosis patients. J Lipid Res, 2015. 56(10): p. 2010-8. PubMed PMC
19. McComb, M., et al., Neuroprotective associations of apolipoproteins A-I and A-II with neurofilament levels in early multiple sclerosis. J Clin Lipidol, 2020. 14(5): p. 675–684 e2. PubMed
20. Feingold, K.R. and C. Grunfeld, Effect of inflammation on HDL structure and function. Curr Opin Lipidol, 2016. 27(5): p. 521 − 30. PubMed
21. De Oliveira, E.S.E.R., et al., Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II. Circulation, 2000. 102(19): p. 2347-52. PubMed
22. Blumenfeld Kan, S., E. Staun-Ram, D. Golan, and A. Miller, HDL-cholesterol elevation associated with fingolimod and dimethyl fumarate therapies in multiple sclerosis. Mult Scler J Exp Transl Clin, 2019. 5(4): p. 2055217319882720. PubMed PMC
23. Milstein, J.L., et al., Intrathecal, Not Systemic Inflammation Is Correlated With Multiple Sclerosis Severity, Especially in Progressive Multiple Sclerosis. Front Neurol, 2019. 10: p. 1232. PubMed PMC
24. Palavra, F., et al., New markers of early cardiovascular risk in multiple sclerosis patients: oxidized-LDL correlates with clinical staging. Dis Markers, 2013. 34(5): p. 341-8. PubMed PMC
25. Charles-Schoeman, C., et al., Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. Arthritis Rheum, 2009. 60(10): p. 2870-9. PubMed PMC
26. McMahon, M., et al., Dysfunctional proinflammatory high-density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheum, 2009. 60(8): p. 2428-37. PubMed PMC
27. Jorissen, W., et al., Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL. Sci Rep, 2017. 7: p. 43410. PubMed PMC
28. G, H.B., V.S. Rao, and V.V. Kakkar, Friend Turns Foe: Transformation of Anti-Inflammatory HDL to Proinflammatory HDL during Acute-Phase Response. Cholesterol, 2011. 2011: p. 274629. PubMed PMC
29. Kontush, A. and M.J. Chapman, Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev, 2006. 58(3): p. 342 − 74. PubMed
30. Ferretti, G. and T. Bacchetti, Peroxidation of lipoproteins in multiple sclerosis. J Neurol Sci, 2011. 311(1–2): p. 92 − 7. PubMed
31. Wang, P., K. Xie, C. Wang, and J. Bi, Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur Neurol, 2014. 72(3–4): p. 249 − 54. PubMed
32. Houdebine, L., et al., Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis. Chem Phys Lipids, 2017. 207(Pt B): p. 127–134. PubMed
33. Radikova, Z., et al., Lipoprotein profiling in early multiple sclerosis patients: effect of chronic inflammation? Lipids Health Dis, 2020. 19(1): p. 49. PubMed PMC
34. McNeil, J.J., et al., Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N Engl J Med, 2018. 379(16): p. 1519–1528. PubMed PMC
35. Sultana Monira Hussain, C.R., Andrew M. Tonkin, Paul Lacaze, Trevor T.-J. Chong, Lawrence J. Beilin, Chenglong Yu, Gerald F. Watts, Joanne Ryan, Michael E. Ernst, Zhen Zhou and J.J.M. Johannes T. Neumann, Association of plasma high-density lipoprotein cholesterol level with risk of incident dementia: a cohort study of healthy older adults. The Lancet Regional Health, 2023. PubMed PMC
36. von Eckardstein, A., B.G. Nordestgaard, A.T. Remaley, and A.L. Catapano, High-density lipoprotein revisited: biological functions and clinical relevance. Eur Heart J, 2023. 44(16): p. 1394–1407. PubMed PMC