The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis

. 2024 Dec 11 ; 15 (12) : e0192524. [epub] 20241121

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39570047

Grantová podpora
21-05466S Grantová Agentura České Republiky (GAČR)
CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)
LQ200202001 Akademie Věd České Republiky (CAS)
CZ.02.2.69/0.0/0.0/18_053/0017705 Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT)

Bordetella pertussis is the causative agent of whooping cough in humans, a disease that has recently experienced a resurgence. In contrast, Bordetella bronchiseptica infects the respiratory tract of various mammalian species, causing a range of symptoms from asymptomatic chronic carriage to acute illness. Both pathogens utilize type III secretion system (T3SS) to deliver the effector protein BteA into host cells. Once injected, BteA triggers a cascade of events leading to caspase 1-independent necrosis through a mechanism that remains incompletely understood. We demonstrate that BteA-induced cell death is characterized by the fragmentation of the cellular endoplasmic reticulum and mitochondria, the formation of necrotic balloon-like protrusions, and plasma membrane permeabilization. Importantly, genome-wide CRISPR-Cas9 screen targeting 19,050 genes failed to identify any host factors required for BteA cytotoxicity, suggesting that BteA does not require a single nonessential host factor for its cytotoxicity. We further reveal that BteA triggers a rapid and sustained influx of calcium ions, which is associated with organelle fragmentation and plasma membrane permeabilization. The sustained elevation of cytosolic Ca2+ levels results in mitochondrial calcium overload, mitochondrial swelling, cristolysis, and loss of mitochondrial membrane potential. Inhibition of calcium channels with 2-APB delays both the Ca2+ influx and BteA-induced cell death. Our findings indicate that BteA exploits essential host processes and/or redundant pathways to disrupt calcium homeostasis and mitochondrial function, ultimately leading to host cell death.IMPORTANCEThe respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica exhibit cytotoxicity toward a variety of mammalian cells, which depends on the type III secretion effector BteA. Moreover, the increased virulence of B. bronchiseptica is associated with enhanced expression of T3SS and BteA. However, the molecular mechanism underlying BteA cytotoxicity is elusive. In this study, we performed a CRISPR-Cas9 screen, revealing that BteA-induced cell death depends on essential or redundant host processes. Additionally, we demonstrate that BteA disrupts calcium homeostasis, which leads to mitochondrial dysfunction and cell death. These findings contribute to closing the gap in our understanding of the signaling cascades targeted by BteA.

Zobrazit více v PubMed

Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382. doi:10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Goodnow RA. 1980. Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738. doi:10.1128/mr.44.4.722-738.1980 PubMed DOI PMC

Melvin JA, Scheller EV, Miller JF, Cotter PA. 2014. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12:274–288. doi:10.1038/nrmicro3235 PubMed DOI PMC

Warfel JM, Zimmerman LI, Merkel TJ. 2014. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA 111:787–792. doi:10.1073/pnas.1314688110 PubMed DOI PMC

Althouse BM, Scarpino SV. 2015. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med 13:146. doi:10.1186/s12916-015-0382-8 PubMed DOI PMC

Kapil P, Wang Y, Zimmerman L, Gaykema M, Merkel TJ. 2024. Repeated Bordetella pertussis infections are required to reprogram acellular pertussis vaccine-primed host responses in the baboon model. J Infect Dis 229:376–383. doi:10.1093/infdis/jiad332 PubMed DOI PMC

Taha-Abdelaziz K, Bassel LL, Harness ML, Clark ME, Register KB, Caswell JL. 2016. Cilia-associated bacteria in fatal Bordetella bronchiseptica pneumonia of dogs and cats. J Vet Diagn Invest 28:369–376. doi:10.1177/1040638716646806 PubMed DOI

Chambers JK, Matsumoto I, Shibahara T, Haritani M, Nakayama H, Uchida K. 2019. An outbreak of fatal Bordetella bronchiseptica bronchopneumonia in puppies. J Comp Pathol 167:41–45. doi:10.1016/j.jcpa.2018.12.002 PubMed DOI PMC

Brockmeier SL, Palmer MV, Bolin SR, Rimler RB. 2001. Effects of intranasal inoculation with Bordetella bronchiseptica, porcine reproductive and respiratory syndrome virus, or a combination of both organisms on subsequent infection with Pasteurella multocida in pigs. Am J Vet Res 62:521–525. doi:10.2460/ajvr.2001.62.521 PubMed DOI

Jorgensen I, Rayamajhi M, Miao EA. 2017. Programmed cell death as a defence against infection. Nat Rev Immunol 17:151–164. doi:10.1038/nri.2016.147 PubMed DOI PMC

Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, Sasakawa C. 2011. Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195:931–942. doi:10.1083/jcb.201108081 PubMed DOI PMC

Goldman WE, Cookson BT. 1988. Structure and functions of the Bordetella tracheal cytotoxin. Tokai J Exp Clin Med 13 Suppl:187–191. PubMed

Kessie DK, Lodes N, Oberwinkler H, Goldman WE, Walles T, Steinke M, Gross R. 2020. Activity of tracheal cytotoxin of Bordetella pertussis in a human tracheobronchial 3D tissue model. Front Cell Infect Microbiol 10:614994. doi:10.3389/fcimb.2020.614994 PubMed DOI PMC

Khelef N, Zychlinsky A, Guiso N. 1993. Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect Immun 61:4064–4071. doi:10.1128/iai.61.10.4064-4071.1993 PubMed DOI PMC

Ahmad JN, Cerny O, Linhartova I, Masin J, Osicka R, Sebo P. 2016. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol 18:384–398. doi:10.1111/cmi.12519 PubMed DOI

Stockbauer KE, Foreman-Wykert AK, Miller JF. 2003. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol 5:123–132. doi:10.1046/j.1462-5822.2003.00260.x PubMed DOI

Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF. 2005. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 58:267–279. doi:10.1111/j.1365-2958.2005.04823.x PubMed DOI

Kamanova J. 2020. Bordetella type III secretion injectosome and effector proteins. Front Cell Infect Microbiol 10:466. doi:10.3389/fcimb.2020.00466 PubMed DOI PMC

Yuk MH, Harvill ET, Miller JF. 1998. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28:945–959. doi:10.1046/j.1365-2958.1998.00850.x PubMed DOI

Pilione MR, Harvill ET. 2006. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect Immun 74:1043–1049. doi:10.1128/IAI.74.2.1043-1049.2006 PubMed DOI PMC

Nicholson TL, Brockmeier SL, Loving CL, Register KB, Kehrli ME, Shore SM. 2014. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun 82:1092–1103. doi:10.1128/IAI.01115-13 PubMed DOI PMC

Cotter PA, Miller JF. 1994. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 62:3381–3390. doi:10.1128/iai.62.8.3381-3390.1994 PubMed DOI PMC

Buboltz AM, Nicholson TL, Weyrich LS, Harvill ET. 2009. Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica. Infect Immun 77:3969–3977. doi:10.1128/IAI.01362-08 PubMed DOI PMC

Ahuja U, Liu M, Tomida S, Park J, Souda P, Whitelegge J, Li H, Harvill ET, Parkhill J, Miller JF. 2012. Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol 12:167. doi:10.1186/1471-2180-12-167 PubMed DOI PMC

Bayram J, Malcova I, Sinkovec L, Holubova J, Streparola G, Jurnecka D, Kucera J, Sedlacek R, Sebo P, Kamanova J. 2020. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog 16:e1008512. doi:10.1371/journal.ppat.1008512 PubMed DOI PMC

French CT, Panina EM, Yeh SH, Griffith N, Arambula DG, Miller JF. 2009. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol 11:1735–1749. doi:10.1111/j.1462-5822.2009.01361.x PubMed DOI PMC

Geissler B. 2012. Bacterial toxin effector-membrane targeting: outside in, then back again. Front Cell Infect Microbiol 2:75. doi:10.3389/fcimb.2012.00075 PubMed DOI PMC

Yahalom A, Davidov G, Kolusheva S, Shaked H, Barber-Zucker S, Zarivach R, Chill JH. 2019. Structure and membrane-targeting of a Bordetella pertussis effector N-terminal domain. Biochim Biophys Acta 1861:183054. doi:10.1016/j.bbamem.2019.183054 PubMed DOI

Malcova I, Bumba L, Uljanic F, Kuzmenko D, Nedomova J, Kamanova J. 2021. Lipid binding by the N-terminal motif mediates plasma membrane localization of Bordetella effector protein BteA. J Biol Chem 296:100607. doi:10.1016/j.jbc.2021.100607 PubMed DOI PMC

Kuwae A, Momose F, Nagamatsu K, Suyama Y, Abe A. 2016. BteA secreted from the Bordetella bronchiseptica type III secetion system induces necrosis through an actin cytoskeleton signaling pathway and inhibits phagocytosis by macrophages. PLoS One 11:e0148387. doi:10.1371/journal.pone.0148387 PubMed DOI PMC

Chertkova AO, Mastop M, Postma M, Bommel N, Niet S, Batenburg KL, Joosen L, Gadella TWJ, Okada Y, Goedhart J. 2020. Robust and bright genetically encoded fluorescent markers for highlighting structures and compartments in mammalian cells. bioRxiv. doi:10.1101/160374 DOI

Chang S-J, Jin SC, Jiao X, Galán JE. 2019. Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. PLoS Pathog 15:e1007704. doi:10.1371/journal.ppat.1007704 PubMed DOI PMC

Blondel CJ, Park JS, Hubbard TP, Pacheco AR, Kuehl CJ, Walsh MJ, Davis BM, Gewurz BE, Doench JG, Waldor MK. 2016. CRISPR/Cas9 screens reveal requirements for host cell sulfation and fucosylation in bacterial type III secretion system-mediated cytotoxicity. Cell Host Microbe 20:226–237. doi:10.1016/j.chom.2016.06.010 PubMed DOI PMC

Shahi I, Llaneras CN, Perelman SS, Torres VJ, Ratner AJ. 2022. Genome-wide CRISPR-Cas9 screen does not identify host factors modulating Streptococcus agalactiae β-hemolysin/cytolysin-induced cell death. Microbiol Spectr 10:e0218621. doi:10.1128/spectrum.02186-21 PubMed DOI PMC

Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784. doi:10.1038/nmeth.3047 PubMed DOI PMC

Subramanian K, Meyer T. 1997. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell 89:963–971. doi:10.1016/s0092-8674(00)80281-0 PubMed DOI

Horn A, Raavicharla S, Shah S, Cox D, Jaiswal JK. 2020. Mitochondrial fragmentation enables localized signaling required for cell repair. J Cell Biol 219:e201909154. doi:10.1083/jcb.201909154 PubMed DOI PMC

Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I. 2000. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27:97–106. doi:10.1054/ceca.1999.0095 PubMed DOI

Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SRW, Usachev YM, Taylor CW, Campbell RE. 2014. Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 464:13–22. doi:10.1042/BJ20140931 PubMed DOI PMC

Rizzuto R, De Stefani D, Raffaello A, Mammucari C. 2012. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. doi:10.1038/nrm3412 PubMed DOI

Rasola A, Bernardi P. 2011. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium 50:222–233. doi:10.1016/j.ceca.2011.04.007 PubMed DOI

Kuwae A, Matsuzawa T, Ishikawa N, Abe H, Nonaka T, Fukuda H, Imajoh-Ohmi S, Abe A. 2006. BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J Biol Chem 281:6589–6600. doi:10.1074/jbc.M512711200 PubMed DOI

Kuwae A, Ohishi M, Watanabe M, Nagai M, Abe A. 2003. BopB is a type III secreted protein in Bordetella bronchiseptica and is required for cytotoxicity against cultured mammalian cells. Cell Microbiol 5:973–983. doi:10.1046/j.1462-5822.2003.00341.x PubMed DOI

Bedoui S, Herold MJ, Strasser A. 2020. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 21:678–695. doi:10.1038/s41580-020-0270-8 PubMed DOI

Barros LF, Kanaseki T, Sabirov R, Morishima S, Castro J, Bittner CX, Maeno E, Ando-Akatsuka Y, Okada Y. 2003. Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ 10:687–697. doi:10.1038/sj.cdd.4401236 PubMed DOI

Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. 2006. Calcium in cell injury and death. Annu Rev Pathol 1:405–434. doi:10.1146/annurev.pathol.1.110304.100218 PubMed DOI

Trump BF, Berezesky IK. 1995. Calcium-mediated cell injury and cell death. FASEB J 9:219–228. doi:10.1096/fasebj.9.2.7781924 PubMed DOI

Yin HL, Albrecht JH, Fattoum A. 1981. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol 91:901–906. doi:10.1083/jcb.91.3.901 PubMed DOI PMC

Wales P, Schuberth CE, Aufschnaiter R, Fels J, García-Aguilar I, Janning A, Dlugos CP, Schäfer-Herte M, Klingner C, Wälte M, Kuhlmann J, Menis E, Hockaday Kang L, Maier KC, Hou W, Russo A, Higgs HN, Pavenstädt H, Vogl T, Roth J, Qualmann B, Kessels MM, Martin DE, Mulder B, Wedlich-Söldner R. 2016. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. Elife 5:e19850. doi:10.7554/eLife.19850 PubMed DOI PMC

Aoki K, Harada S, Kawaji K, Matsuzawa K, Uchida S, Ikenouchi J. 2021. STIM-Orai1 signaling regulates fluidity of cytoplasm during membrane blebbing. Nat Commun 12:480. doi:10.1038/s41467-020-20826-5 PubMed DOI PMC

Weber H, Hühns S, Lüthen F, Jonas L. 2009. Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini. Int J Exp Pathol 90:387–399. doi:10.1111/j.1365-2613.2009.00638.x PubMed DOI PMC

Rami A. 2003. Ischemic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis. Neurobiol Dis 13:75–88. doi:10.1016/s0969-9961(03)00018-4 PubMed DOI

Okuda A, Furuya K, Kiyohara T. 2003. ATP-induced calcium oscillations and change of P2Y subtypes with culture conditions in HeLa cells. Cell Biochem Funct 21:61–68. doi:10.1002/cbf.992 PubMed DOI

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature New Biol 596:583–589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC

Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H, Krogh A, Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv. doi:10.1101/2022.04.08.487609 DOI

Nogawa H, Kuwae A, Matsuzawa T, Abe A. 2004. The type III secreted protein BopD in Bordetella bronchiseptica is complexed with BopB for pore formation on the host plasma membrane. J Bacteriol 186:3806–3813. doi:10.1128/JB.186.12.3806-3813.2004 PubMed DOI PMC

Medhekar B, Shrivastava R, Mattoo S, Gingery M, Miller JF. 2009. Bordetella Bsp22 forms a filamentous type III secretion system tip complex and is immunoprotective in vitro and in vivo. Mol Microbiol 71:492–504. doi:10.1111/j.1365-2958.2008.06543.x PubMed DOI PMC

Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J. 2023. BopN is a gatekeeper of the Bordetella type III secretion system. Microbiol Spectr 11:e0411222. doi:10.1128/spectrum.04112-22 PubMed DOI PMC

Heidersbach AJ, Dorighi KM, Gomez JA, Jacobi AM, Haley B. 2023. A versatile, high-efficiency platform for CRISPR-based gene activation. Nat Commun 14:902. doi:10.1038/s41467-023-36452-w PubMed DOI PMC

Raffaello A, Mammucari C, Gherardi G, Rizzuto R. 2016. Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049. doi:10.1016/j.tibs.2016.09.001 PubMed DOI PMC

Bagur R, Hajnóczky G. 2017. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol Cell 66:780–788. doi:10.1016/j.molcel.2017.05.028 PubMed DOI PMC

Loncke J, Kaasik A, Bezprozvanny I, Parys JB, Kerkhofs M, Bultynck G. 2021. Balancing ER-mitochondrial Ca2+ fluxes in health and disease. Trends Cell Biol 31:598–612. doi:10.1016/j.tcb.2021.02.003 PubMed DOI PMC

Bartok A, Weaver D, Golenár T, Nichtova Z, Katona M, Bánsághi S, Alzayady KJ, Thomas VK, Ando H, Mikoshiba K, Joseph SK, Yule DI, Csordás G, Hajnóczky G. 2019. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun 10:3726. doi:10.1038/s41467-019-11646-3 PubMed DOI PMC

Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K. 1997. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122:498–505. doi:10.1093/oxfordjournals.jbchem.a021780 PubMed DOI

Prakriya M, Lewis RS. 2001. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536:3–19. doi:10.1111/j.1469-7793.2001.t01-1-00003.x PubMed DOI PMC

Lievremont JP, Bird GS, Putney JW Jr. 2005. Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758–762. doi:10.1124/mol.105.012856 PubMed DOI

Chokshi R, Fruasaha P, Kozak JA. 2012. 2-aminoethyl diphenyl borinate (2-APB) inhibits TRPM7 channels through an intracellular acidification mechanism. Channels (Austin) 6:362–369. doi:10.4161/chan.21628 PubMed DOI PMC

Giorgi C, Marchi S, Pinton P. 2018. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 19:713–730. doi:10.1038/s41580-018-0052-8 PubMed DOI

Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G, Bernardi P. 2017. Ca2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 18:1065–1076. doi:10.15252/embr.201643354 PubMed DOI PMC

Kim JS, He L, Lemasters JJ. 2003. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470. doi:10.1016/s0006-291x(03)00618-1 PubMed DOI

Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. 2023. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 30:1869–1885. doi:10.1038/s41418-023-01187-0 PubMed DOI PMC

Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318 PubMed DOI

Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F. 2017. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12:828–863. doi:10.1038/nprot.2017.016 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...