Highlights of the 14th International Bordetella Symposium

. 2025 Jun 25 ; 10 (6) : e0018925. [epub] 20250516

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, kongresy, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40377335

Grantová podpora
R13 AI183722 NIAID NIH HHS - United States
LX22NPO5103, LM2023053, CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO61388971 Institute of Microbiology of the Czech Academy of Sciences
1R13AI183722-01, R13AI183722 National Institute of Allergy and Infectious Diseases

Pertussis, or whooping cough, is a highly contagious and acute respiratory illness caused primarily by the gram-negative coccobacillus Bordetella pertussis. Despite near-universal vaccination, pertussis remains one of the least-controlled vaccine-preventable infectious diseases. Since 2023, pertussis incidence has been rising, and widespread pertussis outbreaks have resurged in many countries. In response to these emerging challenges, almost 300 experts from institutions across 24 countries convened at the 14th International Bordetella Symposium in Prague, Czech Republic, from 24 to 28 June 2024 to discuss pertussis epidemiology and research and strategies to mitigate the global pertussis burden. We present here the highlights of the symposium, comprising epidemiological and clinical aspects of Bordetella infections, results of clinical trials of pertussis vaccination in pregnant women and effectiveness of maternal vaccination in protecting newborn infants in Africa and Europe, the controlled human infection model (CHIM), and the latest insights into the biology, immunology, and pathogenesis of B. pertussis infection.

CINDEFI Facultad de Ciencias Exactas Universidad Nacional de La Plata La Plata Buenos Aires Province Argentina

Clinical Research London School of Hygiene and Tropical Medicine London United Kingdom

Department of Infectious Diseases University of Georgia College of Veterinary Medicine Athens Georgia USA

Department of Microbial Infection and Immunity The Ohio State University Columbus Ohio USA

Department of Microbiology and Immunology Louisiana State University Health Sciences Center at Shreveport Shreveport Louisiana USA

Department of Microbiology and Immunology University of Maryland School of Medicine Baltimore Maryland USA

Departments of Biological Sciences and Biochemistry Purdue University West Lafayette Indiana USA

Division of Pediatric Infectious Diseases Department of Pediatrics Vanderbilt University Medical Center Nashville Tennessee USA

Institute of International Health Charité Universitätsmedizin Berlin Berlin Germany

Institute of Microbiology of the Czech Academy of Sciences Prague Czechia

Laboratory of Medical Immunology Radboud Community of Infectious Diseases Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen Gelderland Netherlands

School of Biochemistry and Immunology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Leinster Ireland

The Milner Centre for Evolution and Department of Life Sciences University of Bath Bath United Kingdom

UK Health Security Agency Porton Down Salisbury United Kingdom

Université Lille Centre National de la Recherche Scientifique Inserm Centre Hospitalier Universitaire Lille Institut Pasteur de Lille U1019 Unité Mixte de Recherche 8204 Center for Infection and Immunity of Lille Lille France

Zobrazit více v PubMed

Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382. doi: 10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. 2017. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis 17:974–980. doi: 10.1016/S1473-3099(17)30390-0 PubMed DOI

Goodnow RA. 1980. Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738. doi: 10.1128/mr.44.4.722-738.1980 PubMed DOI PMC

Uhl MA, Miller JF. 1996. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J Biol Chem 271:33176–33180. doi: 10.1074/jbc.271.52.33176 PubMed DOI

Chen Q, Stibitz S. 2019. The BvgASR virulence regulon of Bordetella pertussis. Curr Opin Microbiol 47:74–81. doi: 10.1016/j.mib.2019.01.002 PubMed DOI

Melvin JA, Scheller EV, Miller JF, Cotter PA. 2014. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 12:274–288. doi: 10.1038/nrmicro3235 PubMed DOI PMC

Sukumar N, Mishra M, Sloan GP, Ogi T, Deora R. 2007. Differential Bvg phase-dependent regulation and combinatorial role in pathogenesis of two Bordetella paralogs, BipA and BcfA. J Bacteriol 189:3695–3704. doi: 10.1128/JB.00009-07 PubMed DOI PMC

Kessie DK, Lodes N, Oberwinkler H, Goldman WE, Walles T, Steinke M, Gross R. 2020. Activity of tracheal cytotoxin of Bordetella pertussis in a human tracheobronchial 3D tissue model. Front Cell Infect Microbiol 10:614994. doi: 10.3389/fcimb.2020.614994 PubMed DOI PMC

Inatsuka CS, Xu Q, Vujkovic-Cvijin I, Wong S, Stibitz S, Miller JF, Cotter PA. 2010. Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun 78:2901–2909. doi: 10.1128/IAI.00188-10 PubMed DOI PMC

Jongerius I, Schuijt TJ, Mooi FR, Pinelli E. 2015. Complement evasion by Bordetella pertussis: implications for improving current vaccines. J Mol Med 93:395–402. doi: 10.1007/s00109-015-1259-1 PubMed DOI PMC

Fedele G, Schiavoni I, Adkins I, Klimova N, Sebo P. 2017. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: a subversive move to fool host immunity. Toxins (Basel) 9:293. doi: 10.3390/toxins9100293 PubMed DOI PMC

Gregg KA, Merkel TJ. 2019. Pertussis toxin: a key component in pertussis vaccines? Toxins (Basel) 11:3390 doi: 10.3390/toxins11100557 PubMed DOI PMC

Carbonetti NH. 2016. Pertussis leukocytosis: mechanisms, clinical relevance and treatment. Pathog Dis 74:ftw087. doi: 10.1093/femspd/ftw087 PubMed DOI PMC

Scanlon K, Skerry C, Carbonetti N. 2019. Association of pertussis toxin with severe pertussis disease. Toxins (Basel) 11:3390 doi: 10.3390/toxins11070373 PubMed DOI PMC

Panina EM, Mattoo S, Griffith N, Kozak NA, Yuk MH, Miller JF. 2005. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol 58:267–279. doi: 10.1111/j.1365-2958.2005.04823.x PubMed DOI

Yuk MH, Harvill ET, Miller JF. 1998. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28:945–959. doi: 10.1046/j.1365-2958.1998.00850.x PubMed DOI

Mattoo S, Yuk MH, Huang LL, Miller JF. 2004. Regulation of type III secretion in Bordetella. Mol Microbiol 52:1201–1214. doi: 10.1111/j.1365-2958.2004.04053.x PubMed DOI

Dewan KK, Linz B, DeRocco SE, Harvill ET. 2020. Acellular pertussis vaccine components: today and tomorrow. Vaccines (Basel) 8:217. doi: 10.3390/vaccines8020217 PubMed DOI PMC

Kuchar E, Karlikowska-Skwarnik M, Han S, Nitsch-Osuch A. 2016. Pertussis: history of the disease and current prevention failure. Adv Exp Med Biol 934:77–82. doi: 10.1007/5584_2016_21 PubMed DOI

Hewlett EL, Edwards KM. 2005. Clinical practice. Pertussis–not just for kids. N Engl J Med 352:1215–1222. doi: 10.1056/NEJMcp041025 PubMed DOI

Sato Y, Sato H. 1999. Development of acellular pertussis vaccines. Biologicals 27:61–69. doi: 10.1006/biol.1999.0181 PubMed DOI

Liang JL, Tiwari T, Moro P, Messonnier NE, Reingold A, Sawyer M, Clark TA. 2018. Prevention of pertussis, tetanus, and diphtheria with vaccines in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 67:1–44. doi: 10.15585/mmwr.rr6702a1 PubMed DOI PMC

Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. 2016. Pertussis: microbiology, disease, treatment, and prevention. Clin Microbiol Rev 29:449–486. doi: 10.1128/CMR.00083-15 PubMed DOI PMC

Schmitt P, Borkner L, Jazayeri SD, McCarthy KN, Mills KH. 2023. Nasal vaccines for pertussis. Curr Opin Immunol 84:102355. doi: 10.1016/j.coi.2023.102355 PubMed DOI

Cherry JD. 2019. The 112-Year odyssey of pertussis and pertussis vaccines-mistakes made and implications for the future. J Pediatric Infect Dis Soc 8:334–341. doi: 10.1093/jpids/piz005 PubMed DOI

Kapil P, Merkel TJ. 2019. Pertussis vaccines and protective immunity. Curr Opin Immunol 59:72–78. doi: 10.1016/j.coi.2019.03.006 PubMed DOI PMC

Domenech de Cellès M, Magpantay FMG, King AA, Rohani P. 2016. The pertussis enigma: reconciling epidemiology, immunology and evolution. Proc Biol Sci 283:20152309. doi: 10.1098/rspb.2015.2309 PubMed DOI PMC

Althouse BM, Scarpino SV. 2015. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med 13:146. doi: 10.1186/s12916-015-0382-8 PubMed DOI PMC

PERISCOPE Consortium . 2019. PERISCOPE: road towards effective control of pertussis. Lancet Infect Dis 19. doi: 10.1016/S1473-3099(18)30646-7. PubMed DOI

Versteegen P, Valente Pinto M, Barkoff AM, van Gageldonk PGM, van de Kassteele J, van Houten MA, Sanders EAM, de Groot R, Diavatopoulos DA, Bibi S, Luoto R, He Q, Buisman A-M, Kelly DF, Mertsola J, Berbers GAM. 2021. Responses to an acellular pertussis booster vaccination in children, adolescents, and young and older adults: a collaborative study in Finland, the Netherlands, and the United Kingdom. EBioMedicine 65:103247. doi: 10.1016/j.ebiom.2021.103247 PubMed DOI PMC

Knuutila A, Barkoff A-M, Ivaska L, Tenhu E, Teräsjärvi J, van Gageldonk P, Buisman A, Mertsola J, He Q, PERISCOPE consortium . 2023. Effect of immunization during pregnancy and pre-existing immunity on diphtheria-tetanus-acellular pertussis vaccine responses in infants. Emerg Microbes Infect 12:2204146. doi: 10.1080/22221751.2023.2204146 PubMed DOI PMC

Saso A, Kanteh E, Jeffries D, Okoye M, Mohammed N, Kumado M, Roetynck S, Jobe H, Faal A, Roberts E, et al. 2025. The effect of pertussis vaccination in pregnancy on the immunogenicity of acellular or whole-cell pertussis vaccination in Gambian infants (GaPS): a single-centre, randomised, controlled, double-blind, phase 4 trial. Lancet Infect Dis:S1473-3099(25)00072-6. doi: 10.1016/S1473-3099(25)00072-6 PubMed DOI

Diks AM, Versteegen P, Teodosio C, Groenland RJ, de Mooij B, Buisman A-M, Torres-Valle A, Pérez-Andrés M, Orfao A, Berbers GAM, van Dongen JJM, Berkowska MAOn Behalf Of The Imi-Periscope Consortium. . 2022. Age and primary vaccination Background influence the plasma cell response to pertussis booster vaccination. Vaccines (Basel) 10:136. doi: 10.3390/vaccines10020136 PubMed DOI PMC

Diks AM, de Graaf H, Teodosio C, Groenland RJ, de Mooij B, Ibrahim M, Hill AR, Read RC, van Dongen JJ, Berkowska MA, IMI-2 PERISCOPE Consortium . 2023. Distinct early cellular kinetics in participants protected against colonization upon Bordetella pertussis challenge. J Clin Invest 133:e163121. doi: 10.1172/JCI163121 PubMed DOI PMC

Lambert EE, Corbière V, van Gaans-van den Brink JAM, Duijst M, Venkatasubramanian PB, Simonetti E, Huynen M, Diavatopoulos DD, Versteegen P, Berbers GAM, Mascart F, van Els CACM. 2020. Uncovering Distinct Primary Vaccination-Dependent profiles in human Bordetella pertussis specific CD4+ T-cell responses using a novel whole blood assay. Vaccines (Basel) 8:225. doi: 10.3390/vaccines8020225 PubMed DOI PMC

Corbière V, Lambert EE, Rodesch M, van Gaans-van den Brink JAM, Misiak A, Simonetti E, Van Praet A, Godefroid A, Diavatopoulos DA, van Els CACM, Mascart F, PERISCOPE WP5 Task 7 working group . 2023. A semi high-throughput whole blood-based flow cytometry assay to detect and monitor Bordetella pertussis-specific Th1, Th2 and Th17 responses. Front Immunol 14:1101366. doi: 10.3389/fimmu.2023.1101366 PubMed DOI PMC

Pinto MV, Barkoff A-M, Bibi S, Knuutila A, Teräsjärvi J, Clutterbuck E, Gimenez-Fourage S, Pagnon A, van Gaans-van den Brink JAM, Corbiere V, De Montfort A, Saso A, Jobe H, Roetynck S, Kampmann B, Simonetti E, Diavatopoulos D, Lambert EE, Mertsola J, Blanc P, van Els CACM, Kelly D, He Q, PERISCOPE Consortium . 2024. A novel whole blood assay to quantify the release of T cell associated cytokines in response to Bordetella pertussis antigens. J Immunol Methods 534:113758. doi: 10.1016/j.jim.2024.113758 PubMed DOI

de Graaf H, Ibrahim M, Hill AR, Gbesemete D, Vaughan AT, Gorringe A, Preston A, Buisman AM, Faust SN, Kester KE, Berbers GAM, Diavatopoulos DA, Read RC. 2020. Controlled human infection with Bordetella pertussis induces asymptomatic, immunizing colonization. Clin Infect Dis 71:403–411. doi: 10.1093/cid/ciz840 PubMed DOI PMC

Cimolai N. 2022. Non-primate animal models for pertussis: back to the drawing board? Appl Microbiol Biotechnol 106:1383–1398. doi: 10.1007/s00253-022-11798-1 PubMed DOI PMC

Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. 2012. Nonhuman primate model of pertussis. Infect Immun 80:1530–1536. doi: 10.1128/IAI.06310-11 PubMed DOI PMC

Warfel JM, Beren J, Merkel TJ. 2012. Airborne transmission of Bordetella pertussis. J Infect Dis 206:902–906. doi: 10.1093/infdis/jis443 PubMed DOI PMC

Warfel JM, Merkel TJ. 2014. The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Rev Vaccines 13:1241–1252. doi: 10.1586/14760584.2014.946016 PubMed DOI

Naninck T, Coutte L, Mayet C, Contreras V, Locht C, Le Grand R, Chapon C. 2018. In vivo imaging of bacterial colonization of the lower respiratory tract in a baboon model of bordetella pertussis infection and transmission. Sci Rep 8:12297. doi: 10.1038/s41598-018-30896-7 PubMed DOI PMC

Naninck T, Contreras V, Coutte L, Langlois S, Hébert-Ribon A, Pelletier M, Reveneau N, Locht C, Chapon C, Le Grand R. 2021. Intranasal inoculation with Bordetella pertussis confers protection without inducing classical whooping cough in baboons. Curr Res Microb Sci 2:100072. doi: 10.1016/j.crmicr.2021.100072 PubMed DOI PMC

Gregg KA, Wang Y, Warfel J, Schoenfeld E, Jankowska E, Cipollo JF, Mayho M, Boinett C, Prasad D, Brickman TJ, Armstrong SK, Parkhill J, Da Silva Antunes R, Sette A, Papin JF, Wolf R, Merkel TJ. 2023. Antigen discovery for next-generation pertussis vaccines using immunoproteomics and transposon-directed insertion sequencing. J Infect Dis 227:583–591. doi: 10.1093/infdis/jiac502 PubMed DOI PMC

Moosa F, Tempia S, Kleynhans J, McMorrow M, Moyes J, du Plessis M, Carrim M, Treurnicht FK, Helferscee O, Mkhencele T, Mathunjwa A, Martinson NA, Kahn K, Lebina L, Wafawanaka F, Cohen C, von Gottberg A, Wolter N, PHIRST Group . 2023. Incidence and transmission dynamics of Bordetella pertussis infection in rural and urban communities, South Africa, 2016‒2018. Emerg Infect Dis 29:294–303. doi: 10.3201/eid2902.221125 PubMed DOI PMC

Brueggemann AB, Jansen van Rensburg MJ, Shaw D, McCarthy ND, Jolley KA, Maiden MCJ, van der Linden MPG, Amin-Chowdhury Z, Bennett DE, Borrow R, et al. 2021. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the invasive respiratory infection surveillance initiative: a prospective analysis of surveillance data. Lancet Digit Health 3:e360–e370. doi: 10.1016/S2589-7500(21)00077-7 PubMed DOI PMC

Nordholm AC, Emborg HD, Nørgaard SK, Nygaard U, Ronayne A, Nielsen LB, Søborg B, Andersen PH, Dalby T. 2024. Pertussis epidemic in Denmark. Euro Surveil 29:2400160. doi: 10.2807/1560-7917.ES.2024.29.14.2400160 PubMed DOI PMC

Callender M, Harvill ET. 2023. Maternal vaccination: shaping the neonatal response to pertussis. Front Immunol 14:1210580. doi: 10.3389/fimmu.2023.1210580 PubMed DOI PMC

Portillo S, Oshinsky J, Williams M, Yoder S, Liang Y, Campbell JD, Laufer MK, Neuzil KM, Edwards KM, Pasetti MF. 2024. Quantitative analysis of pertussis, tetanus, and diphtheria antibodies in sera and breast milk from Tdap vaccinated women using a qualified multiplex assay. mSphere 9:e00527-23. doi: 10.1128/msphere.00527-23 PubMed DOI PMC

Skoff TH, Deng L, Bozio CH, Hariri S. 2023. US infant pertussis incidence trends before and after implementation of the maternal tetanus, diphtheria, and pertussis vaccine. JAMA Pediatr 177:395–400. doi: 10.1001/jamapediatrics.2022.5689 PubMed DOI PMC

Havers FP, Skoff TH, Rench MA, Epperson M, Rajam G, Schiffer J, Hariri S, Swaim LS, Baker CJ, Healy CM. 2023. Maternal Tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccination during pregnancy: impact on infant anti-pertussis antibody concentrations by maternal pertussis priming series. Clin Infect Dis 76:e1087–e1093. doi: 10.1093/cid/ciac432 PubMed DOI

Amirthalingam G, Andrews N, Campbell H, Ribeiro S, Kara E, Donegan K, Fry NK, Miller E, Ramsay M. 2014. Effectiveness of maternal pertussis vaccination in England: an observational study. Lancet 384:1521–1528. doi: 10.1016/S0140-6736(14)60686-3 PubMed DOI

Sandmann F, Jit M, Andrews N, Buckley HL, Campbell H, Ribeiro S, Sile B, Stowe J, Tessier E, Ramsay M, Choi YH, Amirthalingam G. 2020. Infant hospitalizations and fatalities averted by the maternal pertussis vaccination program in England, 2012-2017: post-implementation economic evaluation. Clin Infect Dis 71:1984–1987. doi: 10.1093/cid/ciaa165 PubMed DOI

Regan AK, Moore HC, Binks MJ, McHugh L, Blyth CC, Pereira G, Lust K, Sarna M, Andrews R, Foo D, Effler PV, Lambert S, Van Buynder P. 2023. Maternal pertussis vaccination, infant immunization, and risk of pertussis. Pediatrics 152:e2023062664. doi: 10.1542/peds.2023-062664 PubMed DOI PMC

Fitzpatrick MC, Wenzel NS, Scarpino SV, Althouse BM, Atkins KE, Galvani AP, Townsend JP. 2016. Cost-effectiveness of next-generation vaccines: the case of pertussis. Vaccine (Auckl) 34:3405–3411. doi: 10.1016/j.vaccine.2016.04.010 PubMed DOI

Paireau J, Guillot S, Aït El Belghiti F, Matczak S, Trombert-Paolantoni S, Jacomo V, Taha MK, Salje H, Brisse S, Lévy-Bruhl D, Cauchemez S, Toubiana J. 2022. Effect of change in vaccine schedule on pertussis epidemiology in France: a modelling and serological study. Lancet Infect Dis 22:265–273. doi: 10.1016/S1473-3099(21)00267-X PubMed DOI

Leroux P, Matczak S, Bouchez V, Volant S, Ouziel A, Launay E, Faye A, Rabier V, Sarlangue J, Jeziorski E, Maakaroun-Vermesse Z, Madhi F, Pinquier D, Lorrot M, Pouletty M, Cantais A, Javouhey E, Aït Belghiti F, Guillot S, Rodrigues C, Brisse S, Cohen JF, Toubiana J. 2025. Association between pertactin-producing Bordetella pertussis and fulminant pertussis in infants: a multicentre study in France, 2008–2019. Clin Microbiol Infect 31:233–239. doi: 10.1016/j.cmi.2024.09.009 PubMed DOI

Briga M, Goult E, Brett TS, Rohani P, Domenech de Cellès M. 2024. Maternal pertussis immunization and the blunting of routine vaccine effectiveness: a meta-analysis and modeling study. Nat Commun 15. doi: 10.1038/s41467-024-44943-7 PubMed DOI PMC

Bouchez V, Hegerle N, Strati F, Njamkepo E, Guiso N. 2015. New data on vaccine antigen deficient Bordetella pertussis isolates. Vaccines (Basel) 3:751–770. doi: 10.3390/vaccines3030751 PubMed DOI PMC

Wolfe DN, Goebel EM, Bjornstad ON, Restif O, Harvill ET. 2007. The O antigen enables Bordetella parapertussis to avoid Bordetella pertussis-induced immunity. Infect Immun 75:4972–4979. doi: 10.1128/IAI.00763-07 PubMed DOI PMC

Dewan KK, Taylor-Mulneix DL, Campos LL, Skarlupka AL, Wagner SM, Ryman VE, Gestal MC, Ma L, Blas-Machado U, Faddis BT, Harvill ET. 2019. A model of chronic, transmissible otitis media in mice. PLoS Pathog 15:e1007696. doi: 10.1371/journal.ppat.1007696 PubMed DOI PMC

Dewan KK, Sedney C, Caulfield AD, Su Y, Ma L, Blas-Machado U, Harvill ET. 2021. Probing immune-mediated clearance of acute middle ear infection in mice. Front Cell Infect Microbiol 11:815627. doi: 10.3389/fcimb.2021.815627 PubMed DOI PMC

Sedney CJ, Caulfield A, Dewan KK, Blas-Machado U, Callender M, Manley NR, Harvill ET. 2023. Novel murine model reveals an early role for pertussis toxin in disrupting neonatal immunity to Bordetella pertussis Front Immunol 14:1125794. doi: 10.3389/fimmu.2023.1125794 PubMed DOI PMC

Sim M, Nguyen J, Škopová K, Yoo K, Tai C-H, Knipling L, Chen Q, Kim D, Nolan S, Elaksher R, Majdalani N, Lorenzi H, Stibitz S, Moon K, Hinton DM. 2024. A highly conserved sRNA downregulates multiple genes, including A σ DOI

Bibova I, Skopova K, Masin J, Cerny O, Hot D, Sebo P, Vecerek B. 2013. The RNA chaperone Hfq is required for virulence of Bordetella pertussis. Infect Immun 81:4081–4090. doi: 10.1128/IAI.00345-13 PubMed DOI PMC

Coutte L, Antoine R, Slupek S, Locht C. 2024. Combined transcriptomic and ChIPseq analyses of the Bordetella pertussis RisA regulon. mSystems 9:e00951-23. doi: 10.1128/msystems.00951-23 PubMed DOI PMC

Gutierrez M de la P, Damron FH, Sisti F, Fernández J J. 2024. BvgR is important for virulence-related phenotypes in Bordetella bronchiseptica. Microbiol Spectr 12:e00794-24. doi: 10.1128/spectrum.00794-24 PubMed DOI PMC

Ganguly T, Johnson JB, Kock ND, Parks GD, Deora R. 2014. The Bordetella pertussis Bps polysaccharide enhances lung colonization by conferring protection from complement-mediated killing. Cell Microbiol 16:1105–1118. doi: 10.1111/cmi.12264 PubMed DOI PMC

Fullen AR, Gutierrez-Ferman JL, Yount KS, Love CF, Choi HG, Vargas MA, Raju D, Corps KN, Howell PL, Dubey P, Deora R. 2022. Bps polysaccharide of Bordetella pertussis resists antimicrobial peptides by functioning as a dual surface shield and decoy and converts Escherichia coli into a respiratory pathogen. PLos Pathog 18:1010764. doi: 10.1371/journal.ppat.1010764 PubMed DOI PMC

Fullen AR, Gutierrez-Ferman JL, Rayner RE, Kim SH, Chen P, Dubey P, Wozniak DJ, Peeples ME, Cormet-Boyaka E, Deora R. 2023. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog 19:e1011193. doi: 10.1371/journal.ppat.1011193 PubMed DOI PMC

Zmuda M, Sedlackova E, Pravdova B, Cizkova M, Dalecka M, Cerny O, Allsop TR, Grousl T, Malcova I, Kamanova J. 2024. The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis. mBio 15:e01925-24. doi: 10.1128/mbio.01925-24 PubMed DOI PMC

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263. doi: 10.1126/science.abb2507 PubMed DOI PMC

Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. 2021. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog 17:e1009920. doi: 10.1371/journal.ppat.1009920 PubMed DOI PMC

Goldsmith JA, Maynard JA, McLellan JS. 2022. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep 40:111196. doi: 10.1016/j.celrep.2022.111196 PubMed DOI PMC

Roy G, Antoine R, Schwartz A, Slupek S, Rivera-Millot A, Boudvillain M, Jacob-Dubuisson F. 2022. Posttranscriptional regulation by copper with a new upstream open reading frame. mBio 13:e00912-22. doi: 10.1128/mbio.00912-22 PubMed DOI PMC

Carrica MDC, Gorgojo JP, Lamberti YA, Valdez HA, Rodriguez ME. 2023. Bordetella parapertussis adenylate cyclase toxin promotes the bacterial survival to the encounter with macrophages. Microb Pathog 174:105898. doi: 10.1016/j.micpath.2022.105898 PubMed DOI

Carbonetti NH. 2015. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis 73:ftv073. doi: 10.1093/femspd/ftv073 PubMed DOI PMC

Valdez HA, Marin Franco JL, Gorgojo JP, Alvarez Hayes J, Balboa L, Fernandez Lahore M, Sasiain MC, Rodriguez ME. 2022. Human macrophage polarization shapes B. pertussis intracellular persistence. J Leukoc Biol 112:173–184. doi: 10.1002/JLB.4A0521-254R PubMed DOI

Locht C, Keith JM. 1986. Pertussis toxin gene: nucleotide sequence and genetic organization. Science 232:1258–1264. doi: 10.1126/science.3704651 PubMed DOI

Locht C, Barstad PA, Coligan JE, Mayer L, Munoz JJ, Smith SG, Keith JM. 1986. Molecular cloning of pertussis toxin genes. Nucleic Acids Res 14:3251–3261. doi: 10.1093/nar/14.8.3251 PubMed DOI PMC

Pizza M, Covacci A, Bartoloni A, Perugini M, Nencioni L, De Magistris MT, Villa L, Nucci D, Manetti R, Bugnoli M. 1989. Mutants of pertussis toxin suitable for vaccine development. Science 246:497–500. doi: 10.1126/science.2683073 PubMed DOI

Keech C, Miller VE, Rizzardi B, Hoyle C, Pryor MJ, Ferrand J, Solovay K, Thalen M, Noviello S, Goldstein P, Gorringe A, Cavell B, He Q, Barkoff AM, Rubin K, Locht C. 2023. Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus-diphtheria-acellular pertussis vaccine: a randomised, double-blind, phase 2b trial. Lancet 401:843–855. doi: 10.1016/S0140-6736(22)02644-7 PubMed DOI

Zurita ME, Wilk MM, Carriquiriborde F, Bartel E, Moreno G, Misiak A, Mills KHG, Hozbor D. 2019. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Front Cell Infect Microbiol 9:125. doi: 10.3389/fcimb.2019.00125 PubMed DOI PMC

Pschunder B, Locati L, López O, Martin Aispuro P, Zurita E, Stuible M, Durocher Y, Hozbor D. 2024. Outer membrane vesicles derived from Bordetella pertussis are potent adjuvant that drive Th1-biased response. Front Immunol 15:1387534. doi: 10.3389/fimmu.2024.1387534 PubMed DOI PMC

Wolf MA, O’Hara JM, Bitzer GJ, Narayanan E, Boehm DT, Bevere JR, DeJong MA, Hall JM, Wong TY, Falcone S, Deal CE, Richards A, Green S, Nguyen B, King E, Ogega C, Russo L, Sen-Kilic E, Plante O, Himansu S, Barbier M, Carfi A, Damron FH. 2024. Multivalent mRNA-DTP vaccines are immunogenic and provide protection from Bordetella pertussis challenge in mice. NPJ Vaccines 9:103. doi: 10.1038/s41541-024-00890-4 PubMed DOI PMC

Bitzer GJ, Fitzgerald NA, DeJong MA, Cunningham C, Chapman JA, Boehm DT, Pyles GM, Huckaby AB, Miller SJ, Dublin SR, Warden MD, Barbier M, Damron FH. 2024. Immunization with an mRNA DTP vaccine protects against pertussis in rats. Infect Immun 92:e00520-23. doi: 10.1128/iai.00520-23 PubMed DOI PMC

Shamseldin MM, Read KA, Hall JM, Tuazon JA, Brown JM, Guo M, Gupta YA, Deora R, Oestreich KJ, Dubey P. 2024. The adjuvant BcfA activates antigen presenting cells through TLR4 and supports TFH and TH1 while attenuating TH2 gene programming. Front Immunol 15:1439418. doi: 10.3389/fimmu.2024.1439418 PubMed DOI PMC

Yount KS, Hall JM, Caution K, Shamseldin MM, Guo M, Marion K, Fullen AR, Huang Y, Maynard JA, Quataert SA, Deora R, Dubey P. 2023. Systemic priming and intranasal booster with a BcfA-adjuvanted acellular pertussis vaccine generates CD4+ IL-17+ nasal tissue resident T cells and reduces B. pertussis nasal colonization. Front Immunol 14:1181876. doi: 10.3389/fimmu.2023.1181876 PubMed DOI PMC

Gillard J, Suffiotti M, Brazda P, Venkatasubramanian PB, Versteegen P, de Jonge MI, Kelly D, Bibi S, Pinto MV, Simonetti E, Babiceanu M, Kettring A, Teodosio C, de Groot R, Berbers G, Stunnenberg HG, Schanen B, Fenwick C, Huynen MA, Diavatopoulos DA. 2024. Antiviral responses induced by Tdap-IPV vaccination are associated with persistent humoral immunity to Bordetella pertussis. Nat Commun 15:2133. doi: 10.1038/s41467-024-46560-w PubMed DOI PMC

Gallop D, Scanlon KM, Ardanuy J, Sigalov AB, Carbonetti NH, Skerry C. 2021. Triggering receptor expressed on myeloid cells-1 (TREM-1) contributes to Bordetella pertussis inflammatory pathology. Infect Immun 89:e00126-21. doi: 10.1128/IAI.00126-21 PubMed DOI PMC

Sedney CJ, Masters J, Callender M, Dewan K, Caulfield A, Harvill ET. 2024. Neonatal Neutrophil-mediated Control of Bordetella pertussis is disrupted by pertussis toxin. J Immunol 213:1825–1833. doi: 10.4049/jimmunol.2400363 PubMed DOI PMC

Parrish KM, Gestal MC. 2024. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 92:e00175-24. doi: 10.1128/iai.00175-24 PubMed DOI PMC

da Silva Antunes R, Garrigan E, Quiambao LG, Dhanda SK, Marrama D, Westernberg L, Wang E, Abawi A, Sutherland A, Armstrong SK, Brickman TJ, Sidney J, Frazier A, Merkel TJ, Peters B, Sette A. 2023. T cell reactivity to Bordetella pertussis is highly diverse regardless of childhood vaccination. Cell Host Microbe 31:1404–1416. doi: 10.1016/j.chom.2023.06.015 PubMed DOI PMC

O’Neill E, Curham L, Ní Chasaide C, O’Brien S, McManus G, Moran B, Rubin K, Glazer S, Lynch MA, Mills KHG. 2025. Neonatal infection with Bordetella pertussis promotes autism-like phenotypes in mice. iScience 28:111548. doi: 10.1016/j.isci.2024.111548 PubMed DOI PMC

Borkner L, Curham LM, Wilk MM, Moran B, Mills KHG. 2021. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F PubMed DOI PMC

McCarthy KN, Hone S, McLoughlin RM, Mills KHG. 2024. IL-17 and IFN-γ-producing respiratory tissue-resident memory CD4 T Cells persist for decades in adults immunized as children with whole-cell pertussis vaccines. J Infect Dis 230:e518–e523. doi: 10.1093/infdis/jiae034 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...