T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis

. 2023 Dec ; 12 (2) : 2272638. [epub] 20231101

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37850324

Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.

Zobrazit více v PubMed

Mattoo S, Cherry JD.. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to PubMed DOI PMC

Melvin JA, et al. PubMed DOI PMC

Belcher T, Dubois V, Rivera-Millot A, et al. Pathogenicity and virulence of PubMed DOI PMC

Yuk MH, Harvill ET, Cotter PA, et al. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the PubMed DOI

Nicholson TL, Brockmeier SL, Loving CL, et al. The PubMed DOI PMC

Fennelly NK, Sisti F, Higgins SC, et al. PubMed DOI PMC

Gaillard ME, Bottero D, Castuma CE, et al. Laboratory adaptation of PubMed DOI PMC

Bibova I, Hot D, Keidel K, et al. Transcriptional profiling of PubMed DOI PMC

Brickman TJ, Cummings CA, Liew S-Y, et al. Transcriptional profiling of the iron starvation response in PubMed DOI PMC

Hanawa T, Kamachi K, Yonezawa H, et al. Glutamate limitation, BvgAS activation, and (p)ppGpp regulate the expression of the PubMed DOI PMC

Hester SE, Lui M, Nicholson T, et al. Identification of a CO PubMed DOI PMC

Gestal MC, Rivera I, Howard LK, et al. Blood or serum exposure induce global transcriptional changes, altered antigenic profile, and increased cytotoxicity by classical PubMed DOI PMC

Drzmisek J, et al. Omics analysis of blood-responsive regulon in PubMed PMC

Rivera I, Linz B, Dewan KK, et al. Conservation of ancient genetic pathways for intracellular persistence Among animal pathogenic Bordetellae. Front Microbiol. 2019;10:2839. doi: 10.3389/fmicb.2019.02839 PubMed DOI PMC

Farman MR, Petráčková D, Kumar D, et al. Avirulent phenotype promotes PubMed DOI PMC

Petráčková D, Farman MR, Amman F, et al. Transcriptional profiling of human macrophages during infection with PubMed DOI PMC

Dienstbier A, et al. Comparative integrated omics analysis of the Hfq regulon in PubMed PMC

Dienstbier A, Amman F, Petráčková D, et al. Comparative omics analysis of historic and recent isolates of PubMed DOI PMC

Galán JE, Lara-Tejero M, Marlovits TC, et al. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014;68:415–438. doi: 10.1146/annurev-micro-092412-155725 PubMed DOI PMC

French CT, Panina EM, Yeh SH, et al. The PubMed DOI PMC

Kuwae A, Matsuzawa T, Ishikawa N, et al. BopC is a novel type III effector secreted by and has a critical role in type III-dependent necrotic cell death. J Biol Chem. 2006;281(10):6589–6600. doi: 10.1074/jbc.M512711200 PubMed DOI

Stockbauer KE, Foreman-Wykert AK, Miller JF.. PubMed DOI

Bayram J, Malcova I, Sinkovec L, et al. Cytotoxicity of the effector protein BteA was attenuated in PubMed DOI PMC

Kamanova J. Bordetella type III secretion injectosome and effector proteins. Front Cell Infect Microbiol. 2020;10:466. doi: 10.3389/fcimb.2020.00466 PubMed DOI PMC

Nagamatsu K, Kuwae A, Konaka T, et al. Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J Exp Med. 2009;206(13):3073–3088. doi: 10.1084/jem.20090494 PubMed DOI PMC

Navarrete KM, et al. Bopn is a gatekeeper of the PubMed PMC

Fauconnier A, Veithen A, Gueirard P, et al. Characterization of the type III secretion locus of PubMed DOI

Mattoo S, Yuk MH, Huang LL, et al. Regulation of type III secretion in Bordetella. Mol Microbiol. 2004;52(4):1201–1214. doi: 10.1111/j.1365-2958.2004.04053.x PubMed DOI

Ahuja U, Shokeen B, Cheng N, et al. Differential regulation of type III secretion and virulence genes in PubMed DOI PMC

Moon K, et al. The BvgAS regulon of PubMed PMC

Kurushima J, Kuwae A, Abe A.. The type III secreted protein BspR regulates the virulence genes in PubMed DOI PMC

Abe A, et al. Enteropathogenic PubMed

Elliott SJ, et al. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic PubMed

Katsowich N, Elbaz N, Pal RR, et al. Host cell attachment elicits posttranscriptional regulation in infecting enteropathogenic bacteria. Science. 2017;355(6326):735–739. doi: 10.1126/science.aah4886 PubMed DOI

Ye F, Yang F, Yu R, et al. Molecular basis of binding between the global post-transcriptional regulator CsrA and the T3SS chaperone CesT. Nat Commun. 2018;9(1):1196. doi: 10.1038/s41467-018-03625-x PubMed DOI PMC

Bibova I, Skopova K, Masin J, et al. The RNA chaperone Hfq is required for virulence of PubMed DOI PMC

Inatsuka CS, Xu Q, Vujkovic-Cvijin I, et al. Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun. 2010;78(7):2901–2909. doi: 10.1128/IAI.00188-10 PubMed DOI PMC

Bolger AM, Lohse M, Usadel B.. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC

Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197 PubMed DOI PMC

Risso D, Ngai J, Speed TP, et al. Normalization of RNA-Seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32(9):896–902. doi: 10.1038/nbt.2931 PubMed DOI PMC

Love MI, Huber W, Anders S.. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450. doi: 10.1093/nar/gky1106 PubMed DOI PMC

Hoffman CL, et al. PubMed PMC

Hiramatsu Y, Nishida T, Nugraha DK, et al. Interference of flagellar rotation up-regulates the expression of small RNA contributing to PubMed DOI PMC

Bart MJ, et al. Complete genome sequences of PubMed PMC

Jumper J, Jumper J, Evans R, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC

Evans R, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2021: p. 2021.

Akerley BJ, Monack DM, Falkow S, et al. The bvgAS locus negatively controls motility and synthesis of flagella in PubMed DOI PMC

Nicholson TL, Conover MS, Deora R.. Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in PubMed DOI PMC

Cornelis GR, Van Gijsegem F.. Assembly and function of type III secretory systems. Annu Rev Microbiol. 2000;54:735–774. doi: 10.1146/annurev.micro.54.1.735 PubMed DOI

Gestal MC, et al. Enhancement of immune response against PubMed DOI PMC

Guttenplan SB, Kearns DB.. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37(6):849–871. doi: 10.1111/1574-6976.12018 PubMed DOI PMC

O'Toole GA, Kolter R.. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30(2):295–304. doi: 10.1046/j.1365-2958.1998.01062.x PubMed DOI

Watnick PI, Lauriano CM, Klose KE, et al. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in PubMed DOI PMC

Reuter M, Mallett A, Pearson BM, et al. Biofilm formation by PubMed DOI PMC

Jerse AE, Yu J, Tall BD, et al. A genetic locus of enteropathogenic PubMed DOI PMC

de Gouw D, et al. The vaccine potential of PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...