T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37850324
PubMed Central
PMC10732220
DOI
10.1080/22221751.2023.2272638
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella pertussis, CesT chaperone, T3SS, anti-sigma factor, biofilm,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella pertussis * metabolismus MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- pertuse * MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- sigma faktor MeSH
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.
Zobrazit více v PubMed
Mattoo S, Cherry JD.. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to PubMed DOI PMC
Melvin JA, et al. PubMed DOI PMC
Belcher T, Dubois V, Rivera-Millot A, et al. Pathogenicity and virulence of PubMed DOI PMC
Yuk MH, Harvill ET, Cotter PA, et al. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the PubMed DOI
Nicholson TL, Brockmeier SL, Loving CL, et al. The PubMed DOI PMC
Fennelly NK, Sisti F, Higgins SC, et al. PubMed DOI PMC
Gaillard ME, Bottero D, Castuma CE, et al. Laboratory adaptation of PubMed DOI PMC
Bibova I, Hot D, Keidel K, et al. Transcriptional profiling of PubMed DOI PMC
Brickman TJ, Cummings CA, Liew S-Y, et al. Transcriptional profiling of the iron starvation response in PubMed DOI PMC
Hanawa T, Kamachi K, Yonezawa H, et al. Glutamate limitation, BvgAS activation, and (p)ppGpp regulate the expression of the PubMed DOI PMC
Hester SE, Lui M, Nicholson T, et al. Identification of a CO PubMed DOI PMC
Gestal MC, Rivera I, Howard LK, et al. Blood or serum exposure induce global transcriptional changes, altered antigenic profile, and increased cytotoxicity by classical PubMed DOI PMC
Drzmisek J, et al. Omics analysis of blood-responsive regulon in PubMed PMC
Rivera I, Linz B, Dewan KK, et al. Conservation of ancient genetic pathways for intracellular persistence Among animal pathogenic Bordetellae. Front Microbiol. 2019;10:2839. doi: 10.3389/fmicb.2019.02839 PubMed DOI PMC
Farman MR, Petráčková D, Kumar D, et al. Avirulent phenotype promotes PubMed DOI PMC
Petráčková D, Farman MR, Amman F, et al. Transcriptional profiling of human macrophages during infection with PubMed DOI PMC
Dienstbier A, et al. Comparative integrated omics analysis of the Hfq regulon in PubMed PMC
Dienstbier A, Amman F, Petráčková D, et al. Comparative omics analysis of historic and recent isolates of PubMed DOI PMC
Galán JE, Lara-Tejero M, Marlovits TC, et al. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014;68:415–438. doi: 10.1146/annurev-micro-092412-155725 PubMed DOI PMC
French CT, Panina EM, Yeh SH, et al. The PubMed DOI PMC
Kuwae A, Matsuzawa T, Ishikawa N, et al. BopC is a novel type III effector secreted by and has a critical role in type III-dependent necrotic cell death. J Biol Chem. 2006;281(10):6589–6600. doi: 10.1074/jbc.M512711200 PubMed DOI
Stockbauer KE, Foreman-Wykert AK, Miller JF.. PubMed DOI
Bayram J, Malcova I, Sinkovec L, et al. Cytotoxicity of the effector protein BteA was attenuated in PubMed DOI PMC
Kamanova J. Bordetella type III secretion injectosome and effector proteins. Front Cell Infect Microbiol. 2020;10:466. doi: 10.3389/fcimb.2020.00466 PubMed DOI PMC
Nagamatsu K, Kuwae A, Konaka T, et al. Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J Exp Med. 2009;206(13):3073–3088. doi: 10.1084/jem.20090494 PubMed DOI PMC
Navarrete KM, et al. Bopn is a gatekeeper of the PubMed PMC
Fauconnier A, Veithen A, Gueirard P, et al. Characterization of the type III secretion locus of PubMed DOI
Mattoo S, Yuk MH, Huang LL, et al. Regulation of type III secretion in Bordetella. Mol Microbiol. 2004;52(4):1201–1214. doi: 10.1111/j.1365-2958.2004.04053.x PubMed DOI
Ahuja U, Shokeen B, Cheng N, et al. Differential regulation of type III secretion and virulence genes in PubMed DOI PMC
Moon K, et al. The BvgAS regulon of PubMed PMC
Kurushima J, Kuwae A, Abe A.. The type III secreted protein BspR regulates the virulence genes in PubMed DOI PMC
Abe A, et al. Enteropathogenic PubMed
Elliott SJ, et al. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic PubMed
Katsowich N, Elbaz N, Pal RR, et al. Host cell attachment elicits posttranscriptional regulation in infecting enteropathogenic bacteria. Science. 2017;355(6326):735–739. doi: 10.1126/science.aah4886 PubMed DOI
Ye F, Yang F, Yu R, et al. Molecular basis of binding between the global post-transcriptional regulator CsrA and the T3SS chaperone CesT. Nat Commun. 2018;9(1):1196. doi: 10.1038/s41467-018-03625-x PubMed DOI PMC
Bibova I, Skopova K, Masin J, et al. The RNA chaperone Hfq is required for virulence of PubMed DOI PMC
Inatsuka CS, Xu Q, Vujkovic-Cvijin I, et al. Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun. 2010;78(7):2901–2909. doi: 10.1128/IAI.00188-10 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B.. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197 PubMed DOI PMC
Risso D, Ngai J, Speed TP, et al. Normalization of RNA-Seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32(9):896–902. doi: 10.1038/nbt.2931 PubMed DOI PMC
Love MI, Huber W, Anders S.. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450. doi: 10.1093/nar/gky1106 PubMed DOI PMC
Hiramatsu Y, Nishida T, Nugraha DK, et al. Interference of flagellar rotation up-regulates the expression of small RNA contributing to PubMed DOI PMC
Bart MJ, et al. Complete genome sequences of PubMed PMC
Jumper J, Jumper J, Evans R, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC
Evans R, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2021: p. 2021.
Akerley BJ, Monack DM, Falkow S, et al. The bvgAS locus negatively controls motility and synthesis of flagella in PubMed DOI PMC
Nicholson TL, Conover MS, Deora R.. Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in PubMed DOI PMC
Cornelis GR, Van Gijsegem F.. Assembly and function of type III secretory systems. Annu Rev Microbiol. 2000;54:735–774. doi: 10.1146/annurev.micro.54.1.735 PubMed DOI
Gestal MC, et al. Enhancement of immune response against PubMed DOI PMC
Guttenplan SB, Kearns DB.. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37(6):849–871. doi: 10.1111/1574-6976.12018 PubMed DOI PMC
O'Toole GA, Kolter R.. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30(2):295–304. doi: 10.1046/j.1365-2958.1998.01062.x PubMed DOI
Watnick PI, Lauriano CM, Klose KE, et al. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in PubMed DOI PMC
Reuter M, Mallett A, Pearson BM, et al. Biofilm formation by PubMed DOI PMC
Jerse AE, Yu J, Tall BD, et al. A genetic locus of enteropathogenic PubMed DOI PMC
Architecture and regulatory functions of c-di-GMP signaling in classical Bordetella species
Limited response of primary nasal epithelial cells to Bordetella pertussis infection