Directed functional connectivity of the default-mode-network of young and older healthy subjects
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV: NV19-04-00233
Ministerstvo Zdravotnictví Ceské Republiky
AZV: NV19-04-00233
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38383579
PubMed Central
PMC10881992
DOI
10.1038/s41598-024-54802-6
PII: 10.1038/s41598-024-54802-6
Knihovny.cz E-zdroje
- Klíčová slova
- Aging, Default mode network, Directed functional connectivity MRI, Multivariate analysis, Neuropsychological tests,
- MeSH
- krátkodobá paměť MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku * metody MeSH
- mozek * diagnostické zobrazování MeSH
- nervové dráhy MeSH
- senioři MeSH
- stárnutí MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
Alterations in the default mode network (DMN) are associated with aging. We assessed age-dependent changes of DMN interactions and correlations with a battery of neuropsychological tests, to understand the differences of DMN directed connectivity between young and older subjects. Using a novel multivariate analysis method on resting-state functional MRI data from fifty young and thirty-one healthy older subjects, we calculated intra- and inter-DMN 4-nodes directed pathways. For the old subject group, we calculated the partial correlations of inter-DMN pathways with: psychomotor speed and working memory, executive function, language, long-term memory and visuospatial function. Pathways connecting the DMN with visual and limbic regions in older subjects engaged at BOLD low frequency and involved the dorsal posterior cingulate cortex (PCC), whereas in young subjects, they were at high frequency and involved the ventral PCC. Pathways combining the sensorimotor (SM) cortex and the DMN, were SM efferent in the young subjects and SM afferent in the older subjects. Most DMN efferent pathways correlated with reduced speed and working memory. We suggest that the reduced sensorimotor efferent and the increased need to control such activities, cause a higher dependency on external versus internal cues thus suggesting how physical activity might slow aging.
Department of Neurology and Center of Clinical Neuroscience Charles University Prague Czech Republic
Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
Faculty of Medicine The Hebrew University of Jerusalem Jerusalem Israel
Zobrazit více v PubMed
Varangis E, Habeck CG, Razlighi QR, Stern Y. The effect of aging on resting state connectivity of predefined networks in the brain. Front. Aging Neurosci. 2019;11:234. doi: 10.3389/fnagi.2019.00234. PubMed DOI PMC
Hasher, L. & Zacks, R. T. Working memory, comprehension, and aging: A review and a new view. In Psychology of Learning and Motivation, Vol. 22 (ed. Bower, G.) 193–225 (Academic Press, Cambridge, 1988).
Park DC, Reuter-Lorenz P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009;60:173–196. doi: 10.1146/annurev.psych.59.103006.093656. PubMed DOI PMC
Salthouse TA. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 2010;16(5):754–760. doi: 10.1017/S1355617710000706. PubMed DOI PMC
Damoiseaux JS. Effects of aging on functional and structural brain connectivity. Neuroimage. 2017;160:32–40. doi: 10.1016/j.neuroimage.2017.01.077. PubMed DOI
Raichle ME. The brain's default mode network. Annu. Rev. Neurosci. 2015;38:433–447. doi: 10.1146/annurev-neuro-071013-014030. PubMed DOI
Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. U. S. A. 2004;101(13):4637–4642. doi: 10.1073/pnas.0308627101. PubMed DOI PMC
Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatry. 2010;67(6):584–587. doi: 10.1016/j.biopsych.2009.08.024. PubMed DOI PMC
Fan Y, Borchardt V, von Düring F, Leutritz AL, Dietz M, Herrera-Meléndez AL, et al. Dorsal and ventral posterior cingulate cortex switch network assignment via changes in relative functional connectivity strength to noncanonical networks. Brain Connect. 2019;9(1):77–94. doi: 10.1089/brain.2018.0602. PubMed DOI
Leech R, Braga R, Sharp DJ. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 2012;32(1):215–222. doi: 10.1523/JNEUROSCI.3689-11.2012. PubMed DOI PMC
Mutlu J, Landeau B, Tomadesso C, de Flores R, Mézenge F, de La Sayette V, et al. Connectivity disruption, atrophy, and hypometabolism within posterior cingulate networks in Alzheimer's disease. Front. Neurosci. 2016;10:582. doi: 10.3389/fnins.2016.00582. PubMed DOI PMC
Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, et al. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56(5):924–935. doi: 10.1016/j.neuron.2007.10.038. PubMed DOI PMC
Staffaroni AM, Brown JA, Casaletto KB, Elahi FM, Deng J, Neuhaus J, et al. The longitudinal trajectory of default mode network connectivity in healthy older adults varies as a function of age and is associated with changes in episodic memory and processing speed. J. Neurosci. 2018;38(11):2809–2817. doi: 10.1523/JNEUROSCI.3067-17.2018. PubMed DOI PMC
Simioni AC, Dagher A, Fellows LK. Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson's disease. Neuroimage Clin. 2016;10:54–62. doi: 10.1016/j.nicl.2015.11.005. PubMed DOI PMC
Hillary FG, Rajtmajer SM, Roman CA, Medaglia JD, Slocomb-Dluzen JE, Calhoun VD, et al. The rich get richer: Brain injury elicits hyperconnectivity in core subnetworks. PLoS One. 2014;9(8):e104021. doi: 10.1371/journal.pone.0104021. PubMed DOI PMC
Yang C, Zhong S, Zhou X, Wei L, Wang L, Nie S. The abnormality of topological asymmetry between hemispheric brain white matter networks in Alzheimer's disease and mild cognitive impairment. Front. Aging Neurosci. 2017;9:261. doi: 10.3389/fnagi.2017.00261. PubMed DOI PMC
Menke RA, Proudfoot M, Wuu J, Andersen PM, Talbot K, Benatar M, et al. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. J. Neurol. Neurosurg. Psychiatry. 2016;87(6):580–588. doi: 10.1136/jnnp-2015-311945. PubMed DOI PMC
Goelman G, Dan R. Multiple-region directed functional connectivity based on phase delays. Hum. Brain Mapp. 2017;38(3):1374–1386. doi: 10.1002/hbm.23460. PubMed DOI PMC
Goelman G, Dan R, Keadan T. Characterizing directed functional pathways in the visual system by multivariate nonlinear coherence of fMRI data. Sci. Rep. 2018;8(1):16362. doi: 10.1038/s41598-018-34672-5. PubMed DOI PMC
Goelman G, Dan R, Stossel G, Tost H, Meyer-Lindenberg A, Bilek E. Bidirectional signal exchanges and their mechanisms during joint attention interaction—a hyperscanning fMRI study. Neuroimage. 2019;198:242–254. doi: 10.1016/j.neuroimage.2019.05.028. PubMed DOI
Goelman G, Dan R, Růžička F, Bezdicek O, Jech R. Altered sensorimotor fMRI directed connectivity in Parkinson's disease patients. Eur. J. Neurosci. 2021;53(6):1976–1987. doi: 10.1111/ejn.15053. PubMed DOI
Goelman G, Dan R, Růžička F, Bezdicek O, Jech R. Asymmetry of the insula-sensorimotor circuit in Parkinson's disease. Eur. J. Neurosci. 2021;54:6267–6280. doi: 10.1111/ejn.15432. PubMed DOI
Goelman G, Dan R, Bezdicek O, Jech R. Directed functional connectivity of the sensorimotor system in young and older individuals. Front. Aging Neurosci. 2023;15:1222352. doi: 10.3389/fnagi.2023.1222352. PubMed DOI PMC
Stam CJ, Nolte G, Daffertshofer A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007;28(11):1178–1193. doi: 10.1002/hbm.20346. PubMed DOI PMC
Stam CJ, van Straaten EC. Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. NeuroImage. 2012;62(3):1415–1428. doi: 10.1016/j.neuroimage.2012.05.050. PubMed DOI
Torrence C, Compo GP. Wavelet analysis. Bull. Am. Meteorol. Soc. 1998;79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. DOI
Torrence C, Webster P. Interdecadal changes in the ENSO-Monsoon system. J. Clim. 1999;12:2679–2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2. DOI
Joliot M, Jobard G, Naveau M, Delcroix N, Petit L, Zago L, et al. AICHA: An atlas of intrinsic connectivity of homotopic areas. J. Neurosci. Methods. 2015;254:46–59. doi: 10.1016/j.jneumeth.2015.07.013. PubMed DOI
Peters R. Ageing and the brain. Postgrad. Med. J. 2006;82(964):84–88. doi: 10.1136/pgmj.2005.036665. PubMed DOI PMC
Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):42–52. doi: 10.1016/j.neuron.2009.03.024. PubMed DOI PMC
Dan R, Canetti L, Keadan T, Segman R, Weinstock M, Bonne O, et al. Sex differences during emotion processing are dependent on the menstrual cycle phase. Psychoneuroendocrinology. 2019;100:85–95. doi: 10.1016/j.psyneuen.2018.09.032. PubMed DOI
Pearson JM, Heilbronner SR, Barack DL, Hayden BY, Platt ML. Posterior cingulate cortex: Adapting behavior to a changing world. Trends Cogn. Sci. 2011;15(4):143–151. doi: 10.1016/j.tics.2011.02.002. PubMed DOI PMC
Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(Pt 1):12–32. doi: 10.1093/brain/awt162. PubMed DOI PMC
Wirebring LK, Stillesjö S, Eriksson J, Juslin P, Nyberg L. A similarity-based process for human judgment in the parietal cortex. Front. Hum. Neurosci. 2018;12:481. doi: 10.3389/fnhum.2018.00481. PubMed DOI PMC
Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 1996;103(3):403–428. doi: 10.1037/0033-295X.103.3.403. PubMed DOI
Rebelo-Marques A, De Sousa LA, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, et al. Aging hallmarks: The benefits of physical exercise. Front. Endocrinol. (Lausanne) 2018;9:258. doi: 10.3389/fendo.2018.00258. PubMed DOI PMC
Tavoian D, Russ DW, Consitt LA, Clark BC. Perspective: pragmatic exercise recommendations for older adults: The case for emphasizing resistance training. Front. Physiol. 2020;11:799. doi: 10.3389/fphys.2020.00799. PubMed DOI PMC
Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, et al. International exercise recommendations in older adults (ICFSR): Expert consensus guidelines. J. Nutr. Health Aging. 2021;25(7):824–853. doi: 10.1007/s12603-021-1665-8. PubMed DOI
Zapparoli L, Mariano M, Paulesu E. How the motor system copes with aging: a quantitative meta-analysis of the effect of aging on motor function control. Commun. Biol. 2022;5(1):79. doi: 10.1038/s42003-022-03027-2. PubMed DOI PMC
Dan R, Ruzicka F, Bezdicek O, Roth J, Ruzicka E, Vymazal J, et al. Impact of dopamine and cognitive impairment on neural reactivity to facial emotion in Parkinson's disease. Eur. Neuropsychopharmacol. 2019;29(11):1258–1272. doi: 10.1016/j.euroneuro.2019.09.003. PubMed DOI
Bezdicek O, Motak L, Axelrod BN, Preiss M, Nikolai T, Vyhnalek M, et al. Czech version of the Trail Making Test: Normative data and clinical utility. Arch. Clin. Neuropsychol. 2012;27(8):906–914. doi: 10.1093/arclin/acs084. PubMed DOI
Wechsler D. Wechsler Adult Intelligence Scale (WAIS-3) 3. San Antonio: Harcourt Assessment; 1997.
Michalec J, Bezdicek O, Nikolai T, Harsa P, Zaloudkova H, Ruzicka E, et al. Standardization of the Czech version of the Tower of London test—administration, scoring, validity. Ces. Slov. Neurol. Neurochir. 2014;77:596–601. doi: 10.14735/amcsnn2014596. DOI
Nikolai T, Štěpánková H, Michalec J, Bezdíček O, Horáková K, Marková H, et al. Tests of verbal fluency, Czech normative study in older patients. Čes. Slov. Neurol. Neurochir. 2015;78:292–299.
Zemanová N, Bezdíček O, Michalec J, Nikolai T, Roth J, Jech R, et al. Validity study of the Boston naming test Czech version. Čes. Slov. Neurol. Neurochir. 2016;79:307–316.
Bezdicek O, Rosická AM, Mana J, Libon DJ, Kopeček M, Georgi H. The 30-item and 15-item Boston naming test Czech version: Item response analysis and normative values for healthy older adults. J. Clin. Exp. Neuropsychol. 2021;43(9):890–905. doi: 10.1080/13803395.2022.2029360. PubMed DOI
Bezdicek O, Stepankova H, Moták L, Axelrod BN, Woodard JL, Preiss M, et al. Czech version of Rey Auditory Verbal Learning test: Normative data. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2014;21(6):693–721. doi: 10.1080/13825585.2013.865699. PubMed DOI
Benedict RH, Schretlen D, Groninger L, Dobraski MS, Hpritz B. Revision of the brief visuospatial memory test: Studies of normal performance, reliability, and validity. Psychol. Assess. 1996;8:145–153. doi: 10.1037/1040-3590.8.2.145. DOI
Havlík F, Mana J, Dušek P, Jech R, Růžička E, Kopeček M, et al. Brief visuospatial memory test-revised: Normative data and clinical utility of learning indices in Parkinson's disease. J. Clin. Exp. Neuropsychol. 2020;42(10):1099–1110. doi: 10.1080/13803395.2020.1845303. PubMed DOI
Royall DR, Cordes JA, Polk M. CLOX: An executive clock drawing task. J. Neurol. Neurosurg. Psychiatry. 1998;64(5):588–594. doi: 10.1136/jnnp.64.5.588. PubMed DOI PMC
Woodard JL, Benedict RH, Salthouse TA, Toth JP, Zgaljardic DJ, Hancock HE. Normative data for equivalent, parallel forms of the Judgment of Line Orientation Test. J. Clin. Exp. Neuropsychol. 1998;20(4):457–462. doi: 10.1076/jcen.20.4.457.1470. PubMed DOI
Solomon SR, Sawilowsky SS. Impact of rank-based normalizing transformations on the accuracy of test scores. J. Mod. Appl. Stat. Methods. 2009;8:448–462. doi: 10.22237/jmasm/1257034080. DOI
Whitfield-Gabrieli S, Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073. PubMed DOI
Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37(1):90–101. doi: 10.1016/j.neuroimage.2007.04.042. PubMed DOI PMC
Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–341. doi: 10.1016/j.neuroimage.2013.08.048. PubMed DOI PMC
Muller K, Lohmann G, Neumann J, Grigutsch M, Mildner T, von Cramon DY. Investigating the wavelet coherence phase of the BOLD signal. J Magn Reson Imaging. 2004;20(1):145–152. doi: 10.1002/jmri.20064. PubMed DOI
Yaesoubi M, Allen EA, Miller RL, Calhoun VD. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information. Neuroimage. 2015;120:133–142. doi: 10.1016/j.neuroimage.2015.07.002. PubMed DOI PMC
Chang C, Glover GH. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage. 2010;50(1):81–98. doi: 10.1016/j.neuroimage.2009.12.011. PubMed DOI PMC
Yaesoubi M, Miller RL, Bustillo J, Lim KO, Vaidya J, Calhoun VD. A joint time-frequency analysis of resting-state functional connectivity reveals novel patterns of connectivity shared between or unique to schizophrenia patients and healthy controls. Neuroimage Clin. 2017;15:761–768. doi: 10.1016/j.nicl.2017.06.023. PubMed DOI PMC
Savva AD, Matsopoulos GK, Mitsis GD. A wavelet-based approach for estimating time-varying connectivity in resting-state functional magnetic resonance imaging. Brain Connect. 2022;12(3):285–298. doi: 10.1089/brain.2021.0015. PubMed DOI PMC
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI