Asymmetry of the insula-sensorimotor circuit in Parkinson's disease
Language English Country France Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34449938
DOI
10.1111/ejn.15432
Knihovny.cz E-resources
- Keywords
- apathy, directed functional connectivity, insula asymmetry, mild cognitive impairments, non-motor symptoms in PD, resting-state fMRI,
- MeSH
- Apathy * MeSH
- Cognitive Dysfunction * MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Parkinson Disease * diagnostic imaging MeSH
- Sensorimotor Cortex * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Patients with Parkinson's disease (PD) experience motor and non-motor symptoms, suggesting alterations of the motor and/or limbic system or more probably of their communications. We hypothesized that the communication between the insula (part of the limbic system) and sensorimotor cortex in PD is altered and hemispheric asymmetric. Furthermore, that this asymmetry relates to non-motor symptoms, and specifically, that apathy-related asymmetry is unique to PD. To test these hypotheses, we used a novel multivariate time-frequency analysis method applied to resting-state functional magnetic resonance imaging (MRI) data of 28 controls and 25 participants with PD measured in their OFF medication state. The analysis infers directionality of coupling, that is, afferent or efferent, among four anatomical regions, thus defining directed pathways of information flow, which enables the extension of symmetry measures to include directionality. A major right asymmetry reduction of the dorsal-posterior insula efferent and a slight bilateral increase of insula afferent pathways were observed in participants with PD versus controls. Between-group pathways that correlated with mild cognitive impairments combined the central-executive and default-mode networks through the right insula. Apathy-correlated pathways of the posterior insula in participants with PD versus controls exhibited reduced right efferent and increased left afferent. Because apathy scores were comparable between the groups and effects of the other motor and non-motor symptoms were statistically removed by the analysis, the differences in apathy-correlated pathways were suggested as unique to PD. These pathways could be predictors in the pre-symptomatic phase in patients with apathy.
See more in PubMed
Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Progress in Brain Research, 85, 119-146.
Ballanger, B., Klinger, H., Eche, J., Lerond, J., Vallet, A. E., le Bars, D., Tremblay, L., Sgambato-Faure, V., Broussolle, E., & Thobois, S. (2012). Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson's disease. Movement Disorders, 27, 84-89. https://doi.org/10.1002/mds.23895
Barbas, H., Zikopoulos, B., & Timbie, C. (2011). Sensory pathways and emotional context for action in primate prefrontal cortex. Biological Psychiatry, 69, 1133-1139. https://doi.org/10.1016/j.biopsych.2010.08.008
Beck, A. T., Steer, R. A. & Brown, G. K. (1996). Beck depression inventory-II, San Antonio.
Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436-1438. https://doi.org/10.1126/science.2402638
Bezdicek, O., Nikolai, T., Michalec, J., Ruzicka, F., Havrankova, P., Roth, J., Jech, R., & Ruzicka, E. (2017). The diagnostic accuracy of Parkinson's disease mild cognitive impairment battery using the Movement Disorder Society task force criteria. Movement Disorders Clinical Practice, 4, 237-244. https://doi.org/10.1002/mdc3.12391
Blesa, J., Juri, C., Garcia-Cabezas, M. A., Adanez, R., Sanchez-Gonzalez, M. A., Cavada, C., & Obeso, J. A. (2011). Inter-hemispheric asymmetry of nigrostriatal dopaminergic lesion: A possible compensatory mechanism in Parkinson's disease. Frontiers in Systems Neuroscience, 5, 92.
Blesa, J., Trigo-Damas, I., Dileone, M., del Rey, N. L., Hernandez, L. F., & Obeso, J. A. (2017). Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Experimental Neurology, 298, 148-161. https://doi.org/10.1016/j.expneurol.2017.10.002
Borgonovo, J., Allende-Castro, C., Laliena, A., Guerrero, N., Silva, H., & Concha, M. L. (2017). Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease. Parkinsonism & Related Disorders, 35, 17-24. https://doi.org/10.1016/j.parkreldis.2016.11.009
Brefel-Courbon, C., Payoux, P., Thalamas, C., Ory, F., Quelven, I., Chollet, F., Montastruc, J. L., & Rascol, O. (2005). Effect of levodopa on pain threshold in Parkinson's disease: A clinical and positron emission tomography study. Movement Disorders, 20, 1557-1563. https://doi.org/10.1002/mds.20629
Cauda, F., D'Agata, F., Sacco, K., Duca, S., Geminiani, G., & Vercelli, A. (2011). Functional connectivity of the insula in the resting brain. NeuroImage, 55, 8-23. https://doi.org/10.1016/j.neuroimage.2010.11.049
Chand, G. B., & Dhamala, M. (2016). Interactions among the brain default-mode, salience, and central-executive networks during perceptual decision-making of moving dots. Brain Connectivity, 6, 249-254. https://doi.org/10.1089/brain.2015.0379
Chand, G. B., & Dhamala, M. (2017). Interactions between the anterior cingulate-insula network and the fronto-parietal network during perceptual decision-making. NeuroImage, 152, 381-389. https://doi.org/10.1016/j.neuroimage.2017.03.014
Chand, G. B., Wu, J., Hajjar, I., & Qiu, D. (2017a). Interactions of insula subdivisions-based networks with default-mode and central-executive networks in mild cognitive impairment. Frontiers in Aging Neuroscience, 9, 367. https://doi.org/10.3389/fnagi.2017.00367
Chand, G. B., Wu, J., Hajjar, I., & Qiu, D. (2017b). Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment. Brain Connectivity, 7, 401-412. https://doi.org/10.1089/brain.2017.0509
Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2013). Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cerebral Cortex, 23, 739-749. https://doi.org/10.1093/cercor/bhs065
Chaudhuri, A., & Behan, P. O. (2000). Fatigue and basal ganglia. Journal of the Neurological Sciences, 179, 34-42. https://doi.org/10.1016/S0022-510X(00)00411-1
Chikama, M., McFarland, N. R., Amaral, D. G., & Haber, S. N. (1997). Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. The Journal of neuroscience: the official journal of the Society for Neuroscience, 17, 9686-9705. https://doi.org/10.1523/JNEUROSCI.17-24-09686.1997
Christopher, L., Koshimori, Y., Lang, A. E., Criaud, M., & Strafella, A. P. (2014). Uncovering the role of the insula in non-motor symptoms of Parkinson's disease. Brain, 137, 2143-2154. https://doi.org/10.1093/brain/awu084
Christopher, L., Marras, C., Duff-Canning, S., Koshimori, Y., Chen, R., Boileau, I., Segura, B., Monchi, O., Lang, A. E., Rusjan, P., Houle, S., & Strafella, A. P. (2014). Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment. Brain, 137, 565-575. https://doi.org/10.1093/brain/awt337
Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137, 2382-2395. https://doi.org/10.1093/brain/awu132
Dan, R., Růžička, F., Bezdicek, O., Roth, J., Růžička, E., Vymazal, J., Goelman, G., & Jech, R. (2019). Impact of dopamine and cognitive impairment on neural reactivity to facial emotion in Parkinson's disease. European Neuropsychopharmacology, 29(11), 1258-1272. https://doi.org/10.1016/j.euroneuro.2019.09.003
Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex, 21, 1498-1506. https://doi.org/10.1093/cercor/bhq186
DeLong, M. R. (1990). Primate model of movement disorders of the basal ganglia origin. Trends in Neurosciences, 13, 281-285. https://doi.org/10.1016/0166-2236(90)90110-V
DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20-24. https://doi.org/10.1001/archneur.64.1.20
Deuschl, G., Schupbach, M., Knudsen, K., Pinsker, M. O., Cornu, P., Rau, J., Agid, Y., & Schade-Brittinger, C. (2013). Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson's disease: Concept and standards of the EARLYSTIM-study. Parkinsonism & Related Disorders, 19, 56-61. https://doi.org/10.1016/j.parkreldis.2012.07.004
Fathy, Y. Y., Hoogers, S. E., Berendse, H. W., van der Werf, Y. D., Visser, P. J., de Jong, F. J., & van de Berg, W. D. J. (2019). Differential insular cortex sub-regional atrophy in neurodegenerative diseases: A systematic review and meta-analysis. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-019-00099-3
Fathy, Y. Y., Jonker, A. J., Oudejans, E., de Jong, F. J. J., van Dam, A. W., Rozemuller, A. J. M., & van de Berg, W. D. J. (2019). Differential insular cortex subregional vulnerability to alpha-synuclein pathology in Parkinson's disease and dementia with Lewy bodies. Neuropathology and Applied Neurobiology, 45, 262-277. https://doi.org/10.1111/nan.12501
Fudge, J. L., Breitbart, M. A., Danish, M., & Pannoni, V. (2005). Insular and gustatory inputs to the caudal ventral striatum in primates. The Journal of Comparative Neurology, 490, 101-118. https://doi.org/10.1002/cne.20660
Goelman, G., & Dan, R. (2017). Multiple-region directed functional connectivity based on phase delays. Human Brain Mapping, 38, 1374-1386. https://doi.org/10.1002/hbm.23460
Goelman, G., Dan, R., & Keadan, T. (2018). Characterizing directed functional pathways in the visual system by multivariate nonlinear coherence of fMRI data. Scientific Reports, 8, 16362. https://doi.org/10.1038/s41598-018-34672-5
Goelman, G., Dan, R., Růžička, F., Bezdicek, O., & Jech, R. (2021). Altered sensorimotor fMRI directed connectivity in Parkinson's disease patients. European Journal of Neuroscience, 53(6), 1976-1987. https://doi.org/10.1111/ejn.15053
Goelman, G., Dan, R., Stossel, G., Tost, H., Meyer-Lindenberg, A., & Bilek, E. (2019). Bidirectional signal exchanges and their mechanisms during joint attention interaction-A hyperscanning fMRI study. NeuroImage, 198, 242-254. https://doi.org/10.1016/j.neuroimage.2019.05.028
Joliot, M., Jobard, G., Naveau, M., Delcroix, N., Petit, L., Zago, L., Crivello, F., Mellet, E., Mazoyer, B., & Tzourio-Mazoyer, N. (2015). AICHA: An Atlas of Intrinsic Connectivity of Homotopic Areas. Journal of Neuroscience Methods, 254, 46-59. https://doi.org/10.1016/j.jneumeth.2015.07.013
Kann, S., Zhang, S., Manza, P., Leung, H. C., & Li, C. R. (2016). Hemispheric lateralization of resting-state functional connectivity of the anterior insula: Association with age, gender, and a novelty-seeking trait. Brain Connectivity, 6, 724-734. https://doi.org/10.1089/brain.2016.0443
Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B. (2010). A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Structure & Function, 214, 519-534. https://doi.org/10.1007/s00429-010-0255-z
Leentjens, A. F., Dujardin, K., Marsh, L., Martinez-Martin, P., Richard, I. H., Starkstein, S. E., Weintraub, D., Sampaio, C., Poewe, W., Rascol, O., Stebbins, G. T., & Goetz, C. G. (2008). Apathy and anhedonia rating scales in Parkinson's disease: Critique and recommendations. Movement Disorders: Official Journal of the Movement Disorder Society, 23, 2004-2014. https://doi.org/10.1002/mds.22229
Litvan, I., Goldman, J. G., Troster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., Mollenhauer, B., Adler, C. H., Marder, K., Williams-Gray, C. H., Aarsland, D., Kulisevsky, J., Rodriguez-Oroz, M. C., Burn, D. J., Barker, R. A., & Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Movement Disorders: Official Journal of the Movement Disorder Society, 27, 349-356. https://doi.org/10.1002/mds.24893
Müller, K., Lohmann, G., Neumann, J., Grigutsch, M., Mildner, T., & von Cramon, D. Y. (2004). Investigating the wavelet coherence phase of the BOLD signal. Journal of Magnetic Resonance Imaging, 20, 145-152. https://doi.org/10.1002/jmri.20064
Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695-699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320-341. https://doi.org/10.1016/j.neuroimage.2013.08.048
Price, J. L. (2007). Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Annals of the New York Academy of Sciences, 1121, 54-71. https://doi.org/10.1196/annals.1401.008
Price, J. L., Carmichael, S. T., & Drevets, W. C. (1996). Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Progress in Brain Research, 107, 523-536. https://doi.org/10.1016/S0079-6123(08)61885-3
Robert, G., le Jeune, F., Lozachmeur, C., Drapier, S., Dondaine, T., Peron, J., Travers, D., Sauleau, P., Millet, B., Verin, M., & Drapier, D. (2012). Apathy in patients with Parkinson disease without dementia or depression: A PET study. Neurology, 79, 1155-1160. https://doi.org/10.1212/WNL.0b013e3182698c75
Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Manual for the state-trait anxiety inventory. Palo Alto.
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569-12574. https://doi.org/10.1073/pnas.0800005105
Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28, 1178-1193. https://doi.org/10.1002/hbm.20346
Stam, C. J., & van Straaten, E. C. (2012). Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. NeuroImage, 62, 1415-1428. https://doi.org/10.1016/j.neuroimage.2012.05.050
Starkstein, S. E., Mayberg, H. S., Preziosi, T. J., Andrezejewski, P., Leiguarda, R., & Robinson, R. G. (1992). Reliability, validity, and clinical correlates of apathy in Parkinson's disease. The Journal of Neuropsychiatry and Clinical Neurosciences, 4, 134-139. https://doi.org/10.1176/jnp.4.2.134
Tinaz, S., Para, K., Vives-Rodriguez, A., Martinez-Kaigi, V., Nalamada, K., Sezgin, M., Scheinost, D., Hampson, M., Louis, E. D., & Constable, R. T. (2018). Insula as the Interface between body awareness and movement: A Neurofeedback-guided kinesthetic motor imagery study in Parkinson's disease. Frontiers in Human Neuroscience, 12, 496. https://doi.org/10.3389/fnhum.2018.00496
Torrence, C., & Compo, G. P. (1998). Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
Torrence, C., & Webster, P. (1999). Interdecadal changes in the ENSO-Monsoon system. Journal of Climate, 12, 2679-2690. https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273-289. https://doi.org/10.1006/nimg.2001.0978
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34, 300-306. https://doi.org/10.1097/WNP.0000000000000377
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2, 125-141. https://doi.org/10.1089/brain.2012.0073
Wu, X., Li, Q., Yu, X., Chen, K., Fleisher, A. S., Guo, X., Zhang, J., Reiman, E. M., Yao, L., & Li, R. (2016). A triple network connectivity study of large-scale brain systems in cognitively normal APOE4 carriers. Frontiers in Aging Neuroscience, 8, 231.