Directed functional connectivity of the sensorimotor system in young and older individuals

. 2023 ; 15 () : 1222352. [epub] 20231011

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37881361

INTRODUCTION: Studies in the sensorimotor system of older versus young individuals have shown alterations in functional connectivity and organization. Our objective was to explore the implications of these differences in terms of local organizations, and to identify processes that correlate with neuropsychological parameters. METHODS: Using a novel multivariate analysis method on resting-state functional MRI data obtained from 50 young and 31 older healthy individuals, we identified directed 4-node functional pathways within the sensorimotor system and examined their correlations with neuropsychological assessments. RESULTS: In young individuals, the functional pathways were unidirectional, flowing from the primary motor and sensory cortices to higher motor and visual regions. In older individuals, the functional pathways were more complex. They originated either from the calcarine sulcus or the insula and passed through mutually coupled high-order motor areas before reaching the primary sensory and motor cortices. Additionally, the pathways in older individuals that resembled those found in young individuals exhibited a positive correlation with years of education. DISCUSSION: The flow pattern of young individuals suggests efficient and fast information transfer. In contrast, the mutual coupling of high-order motor regions in older individuals suggests an inefficient and slow transfer, a less segregated and a more integrated organization. The differences in the number of sensorimotor pathways and of their directionality suggests reduced efferent degenerated pathways and increased afferent compensated pathways. Furthermore, the positive effect of years of education may be associated with the Cognitive Reserve Hypothesis, implying that cognitive reserve could be maintained through specific information transfer pathways.

Zobrazit více v PubMed

Bachtiar V., Near J., Johansen-Berg H., Stagg C. J. (2015). "modulation of GABA and resting state functional connectivity by transcranial direct current stimulation," (in eng). elife 4:e08789. doi: 10.7554/eLife.08789, PMID: PubMed DOI PMC

Beck A. T., Steer R. A., Brown G. K., Beck depression inventory-II. San Antonio, TX: Psychological Corporation; (1996).

Behzadi Y., Restom K., Liau J., Liu T. T. (2007). "a component based noise correction method (CompCor) for BOLD and perfusion based fMRI," (in eng). NeuroImage 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042, PMID: PubMed DOI PMC

Benedict R. H., Schretlen D., Groninger L., Dobraski S M., Hpritz B. (1996). Revision of the brief visuospatial memory test: studies of normal performance, reliability, and validity. Psychol. Assess. 8, 145–153. doi: 10.1037/1040-3590.8.2.145 DOI

Bezdicek O., Motak L., Axelrod B. N., Preiss M., Nikolai T., Vyhnalek M., et al. . (2012). "Czech version of the trail making test: normative data and clinical utility," (in eng). Arch. Clin. Neuropsychol. 27, 906–914. doi: 10.1093/arclin/acs084, PMID: PubMed DOI

Bezdicek O., Nikolai T., Michalec J., Růžička F., Havránková P., Roth J., et al. . (2017). The diagnostic accuracy of Parkinson's disease mild cognitive impairment battery using the Movement Disorder Society task force criteria. Mov Disord Clin Pract 4, 237–244. doi: 10.1002/mdc3.12391 PubMed DOI PMC

Bezdicek O., Rosická A. M., Mana J., Libon D. J., Kopeček M., Georgi H. (2021). "the 30-item and 15-item Boston naming test Czech version: item response analysis and normative values for healthy older adults," (in eng). J. Clin. Exp. Neuropsychol. 43, 890–905. doi: 10.1080/13803395.2022.2029360, PMID: PubMed DOI

Bezdicek O., Stepankova H., Moták L., Axelrod B. N., Woodard J. L., Preiss M., et al. . (2014). "Czech version of Rey auditory verbal learning test: normative data," (in eng). Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 21, 693–721. doi: 10.1080/13825585.2013.865699, PMID: PubMed DOI

Cassady K., Gagnon H., Freiburger E., Lalwani P., Simmonite M., Park D. C., et al. . (2020). "network segregation varies with neural distinctiveness in sensorimotor cortex," (in eng). NeuroImage 212:116663. doi: 10.1016/j.neuroimage.2020.116663, PMID: PubMed DOI PMC

Chai X. J., Castañón A. N., Ongür D., Whitfield-Gabrieli S. (2012). "Anticorrelations in resting state networks without global signal regression," (in eng). NeuroImage 59, 1420–1428. doi: 10.1016/j.neuroimage.2011.08.048, PMID: PubMed DOI PMC

Christie G. J., Hamilton T., Manor B. D., Farb N. A. S., Farzan F., Sixsmith A., et al. . (2017). "do lifestyle activities protect against cognitive decline in aging? A review," (in eng). Front. Aging Neurosci. 9:381. doi: 10.3389/fnagi.2017.00381, PMID: PubMed DOI PMC

Ciharova M., Cígler H., Dostálová V., Šivicová G., Bezdicek O. (2020). Beck depression inventory, second edition, Czech version: demographic correlates, factor structure and comparison with foreign data. Int. J. Psychiatry Clin. Pract. 24, 371–379. doi: 10.1080/13651501.2020.1775854, PMID: PubMed DOI

Damoiseaux J. S. (2017). "effects of aging on functional and structural brain connectivity," (in eng). NeuroImage 160, 32–40. doi: 10.1016/j.neuroimage.2017.01.077 PubMed DOI

Dan R., Canetti L., Keadan T., Segman R., Weinstock M., Bonne O., et al. . (2019a). Sex differences during emotion processing are dependent on the menstrual cycle phase. Psychoneuroendocrinology 100, 85–95. doi: 10.1016/j.psyneuen.2018.09.032, PMID: PubMed DOI

Dan R., Růžička F., Bezdicek O., Roth J., Růžička E., Vymazal J., et al. . (2019b). Impact of dopamine and cognitive impairment on neural reactivity to facial emotion in Parkinson's disease. Eur. Neuropsychopharmacol. 29, 1258–1272. doi: 10.1016/j.euroneuro.2019.09.003, PMID: PubMed DOI

Dan R., Weinstock M., Goelman G. (2023). "emotional states as distinct configurations of functional brain networks," (in eng). Cereb. Cortex 33, 5727–5739. doi: 10.1093/cercor/bhac455, PMID: PubMed DOI

Deery H. A., Di Paolo R., Moran C., Egan G. F., Jamadar S. D. (2023). "the older adult brain is less modular, more integrated, and less efficient at rest: a systematic review of large-scale resting-state functional brain networks in aging," (in eng). Psychophysiology 60:e14159. doi: 10.1111/psyp.14159, PMID: PubMed DOI PMC

Frolov N. S., Pitsik E. N., Maksimenko V. A., Grubov V. V., Kiselev A. R., Wang Z., et al. . (2020). "age-related slowing down in the motor initiation in elderly adults," (in eng). PLoS One 15:e0233942. doi: 10.1371/journal.pone.0233942 PubMed DOI PMC

Goelman G., Dan R. (2017). Multiple-region directed functional connectivity based on phase delays. Hum. Brain Mapp. 38, 1374–1386. doi: 10.1002/hbm.23460, PMID: PubMed DOI PMC

Goelman G., Dan R., Bezdicek O., Jech R., Ekstein D. (2022). Older age is associated with a shift from ventral to dorsal PCC in pathways connecting the DMN with visual and limbic areas and a directionality shift in pathways connecting the DMN with sensorimotor areas. bioRxiv. doi: 10.1101/2022.12.04.519066 DOI

Goelman G., Dan R., Keadan T. (2018). Characterizing directed functional pathways in the visual system by multivariate nonlinear coherence of fMRI data. Sci. Rep. 8:16362. doi: 10.1038/s41598-018-34672-5, PMID: PubMed DOI PMC

Goelman G., Dan R., Růžička F., Bezdicek O., Jech R. (2021a). "altered sensorimotor fMRI directed connectivity in Parkinson's disease patients," (in eng). Eur. J. Neurosci. 53, 1976–1987. doi: 10.1111/ejn.15053, PMID: PubMed DOI

Goelman G., Dan R., Růžička F., Bezdicek O., Jech R. (2021b). "asymmetry of the insula-sensorimotor circuit in Parkinson's disease," (in eng). Eur. J. Neurosci. 54, 6267–6280. doi: 10.1111/ejn.15432, PMID: PubMed DOI

Goelman G., Dan R., Stossel G., Tost H., Meyer-Lindenberg A., Bilek E. (2019). Bidirectional signal exchanges and their mechanisms during joint attention interaction - a hyperscanning fMRI study. NeuroImage 198, 242–254. doi: 10.1016/j.neuroimage.2019.05.028 PubMed DOI

Goh J. O. (2011). "functional dedifferentiation and altered connectivity in older adults: neural accounts of cognitive aging," (in eng). Aging Dis. 2, 30–48. PMID: PubMed PMC

Guzzetti S., Mancini F., Caporali A., Manfredi L., Daini R. (2019). "the association of cognitive reserve with motor and cognitive functions for different stages of Parkinson's disease," (in eng). Exp. Gerontol. 115, 79–87. doi: 10.1016/j.exger.2018.11.020, PMID: PubMed DOI

Hamer M., Chida Y. (2009). "physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence," (in eng). Psychol. Med. 39, 3–11. doi: 10.1017/S0033291708003681, PMID: PubMed DOI

Havlík F., Mana J., Dušek P., Jech R., Růžička E., Kopeček M., et al. . (2020). "brief visuospatial memory test-revised: normative data and clinical utility of learning indices in Parkinson's disease," (in eng). J. Clin. Exp. Neuropsychol. 42, 1099–1110. doi: 10.1080/13803395.2020.1845303, PMID: PubMed DOI

Heise K. F., Rueda-Delgado L., Chalavi S., King B. R., Monteiro T. S., Edden R. A. E., et al. . (2022). "the interaction between endogenous GABA, functional connectivity, and behavioral flexibility is critically altered with advanced age," (in eng). Commun Biol 5:426. doi: 10.1038/s42003-022-03378-w, PMID: PubMed DOI PMC

Heise K. F., Zimerman M., Hoppe J., Gerloff C., Wegscheider K., Hummel F. C. (2013). "the aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance," (in eng). J. Neurosci. 33, 9039–9049. doi: 10.1523/JNEUROSCI.4094-12.2013, PMID: PubMed DOI PMC

Kopecek M., Stepankova H., Lukavsky J., Ripova D., Nikolai T., Bezdicek O. (2017). "Montreal cognitive assessment (MoCA): normative data for old and very old Czech adults," (in eng). Appl. Neuropsychol. Adult 24, 23–29. doi: 10.1080/23279095.2015.1065261, PMID: PubMed DOI

Larivière S., Xifra-Porxas A., Kassinopoulos M., Niso G., Baillet S., Mitsis G. D., et al. . (2019). "functional and effective reorganization of the aging brain during unimanual and bimanual hand movements," (in eng). Hum. Brain Mapp. 40, 3027–3040. doi: 10.1002/hbm.24578, PMID: PubMed DOI PMC

Litvan I., Goldman J. G., Tröster A. I., Schmand B. A., Weintraub D., Petersen R. C., et al. . (2012). Diagnostic criteria for mild cognitive impairment in Parkinson's disease: movement Disorder Society task force guidelines. Movement Disord.: Official J. Movement Disord. Society 27, 349–356. doi: 10.1002/mds.24893, PMID: PubMed DOI PMC

Michalec J., Bezdíček O., Nikolai T., Harsa P., Žaloudková H., Růžička E., et al. . (2014). Standardization of the Czech version of the tower of London test - administration, scoring, validity. Ces. a Slov. Neurol. a Neurochir 77/110, 596–601. doi: 10.14735/amcsnn2014596 DOI

Muller K., Lohmann G., Neumann J., Grigutsch M., Mildner T., von Cramon D. Y. (2004). Investigating the wavelet coherence phase of the BOLD signal. J. Magn. Reson. Imaging 20, 145–152. doi: 10.1002/jmri.20064 PubMed DOI

Murphy K., Birn R. M., Handwerker D. A., Jones T. B., Bandettini P. A. (2009). "the impact of global signal regression on resting state correlations: are anti-correlated networks introduced?," (in eng). NeuroImage 44, 893–905. doi: 10.1016/j.neuroimage.2008.09.036, PMID: PubMed DOI PMC

Nasreddine Z. S., Phillips N. A., Bédirian V. Ã.©., Charbonneau S., Whitehead V., Collin I., et al. . (2005). The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699. doi: 10.1111/j.1532-5415.2005.53221.x, PMID: PubMed DOI

Nikolai T., Štěpánková H., Michalec J., Bezdíček O., Horáková K., Marková H., et al. . (2015). Tests of verbal fluency, Czech normative study in older patients. Česká a Slov. Neurol. a Neurochir. 78/111, 292–299. doi: 10.14735/amcsnn2015292 DOI

Power J. D., Mitra A., Laumann T. O., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341. doi: 10.1016/j.neuroimage.2013.08.048, PMID: PubMed DOI PMC

Rebelo-Marques A., de Sousa Lages A., Andrade R., Ribeiro C. F., Mota-Pinto A., Carrilho F., et al. . (2018). Aging hallmarks: the benefits of physical exercise. Front Endocrinol (Lausanne) 9:258. doi: 10.3389/fendo.2018.00258, PMID: PubMed DOI PMC

Royall D. R., Cordes J. A., Polk M. (1998). "CLOX: an executive clock drawing task," (in eng). J. Neurol. Neurosurg. Psychiatry 64, 588–594. doi: 10.1136/jnnp.64.5.588, PMID: PubMed DOI PMC

Rozycka A., Liguz-Lecznar M. (2017). "the space where aging acts: focus on the GABAergic synapse," (in eng). Aging Cell 16, 634–643. doi: 10.1111/acel.12605, PMID: PubMed DOI PMC

Solomon S. R., Sawilowsky S. S. (2009). Impact of rank-based normalizing transformations on the accuracy of test scores. J. Mod. Appl. Stat. Methods 8, 448–462. doi: 10.22237/jmasm/1257034080 DOI

Spielberger C. D., Gorsuch R. L., Lushene R. E. (1970). Manual for the state-trait anxiety inventory. Palo Alto.

Stagg C. J., Bachtiar V., Amadi U., Gudberg C. A., Ilie A. S., Sampaio-Baptista C., et al. . (2014). "local GABA concentration is related to network-level resting functional connectivity," (in eng). elife 3:e01465. doi: 10.7554/eLife.01465, PMID: PubMed DOI PMC

Stam C. J., Nolte G., Daffertshofer A. (2007). Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193. doi: 10.1002/hbm.20346, PMID: PubMed DOI PMC

Stam C. J., van Straaten E. C. (2012). Go with the flow: use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. NeuroImage 62, 1415–1428. doi: 10.1016/j.neuroimage.2012.05.050, PMID: PubMed DOI

Starkstein S. E., Mayberg H. S., Preziosi T. J., Andrezejewski P., Leiguarda R., Robinson R. G. (1992). Reliability, validity, and clinical correlates of apathy in Parkinson's disease. J. Neuropsychiatr. Clin. Neurosci. 4, 134–139. doi: 10.1176/jnp.4.2.134, PMID: PubMed DOI

Taillard J., Gronfier C., Bioulac S., Philip P., Sagaspe P. (2021). Sleep in Normal aging, homeostatic and circadian regulation and vulnerability to sleep deprivation. Brain Sci. 11:1003. doi: 10.3390/brainsci11081003, PMID: PubMed DOI PMC

Torrence C., Compo G. P. (1998). Wavelet Analysis. Bull. Amer. Meteor. Soc. 79, 61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 DOI

Torrence C., Webster P. (1999). Interdecadal changes in the ENSO-monsoon system. J. Clim. 12, 2679–2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 DOI

Tucker-Drob E. M., Johnson K. E., Jones R. N. (2009). "the cognitive reserve hypothesis: a longitudinal examination of age-associated declines in reasoning and processing speed," (in eng). Dev. Psychol. 45, 431–446. doi: 10.1037/a0014012 PubMed DOI PMC

Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. . (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289. doi: 10.1006/nimg.2001.0978 PubMed DOI

van Orden K. A., Bower E., Lutz J., Silva C., Gallegos A. M., Podgorski C. A., et al. . (2021). "strategies to promote social connections among older adults during "social distancing" restrictions," (in eng). Am. J. Geriatr. Psychiatry 29, 816–827. doi: 10.1016/j.jagp.2020.05.004, PMID: PubMed DOI PMC

Varangis E., Habeck C. G., Razlighi Q. R., Stern Y. (2019). "the effect of aging on resting state connectivity of predefined networks in the brain," (in eng). Front. Aging Neurosci. 11:234. doi: 10.3389/fnagi.2019.00234, PMID: PubMed DOI PMC

Wang L., Zhang Y., Zhang J., Sang L., Li P., Yan R., et al. . (2019). "aging changes effective connectivity of motor networks during motor execution and motor imagery," (in eng). Front. Aging Neurosci. 11:312. doi: 10.3389/fnagi.2019.00312, PMID: PubMed DOI PMC

Wechsler D.. Wechsler adult intelligence scale. 3rd edn. (WAIS-3). San Antonio, TX: Harcourt Assess. (1997).

Whitfield-Gabrieli S., Nieto-Castanon A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141. doi: 10.1089/brain.2012.0073, PMID: PubMed DOI

Woodard J. L., Benedict R. H., Salthouse T. A., Toth J. P., Zgaljardic D. J., Hancock H. E. (1998). "normative data for equivalent, parallel forms of the judgment of line orientation test," (in eng). J. Clin. Exp. Neuropsychol. 20, 457–462. doi: 10.1076/jcen.20.4.457.1473, PMID: PubMed DOI

Yegorov Y. E., Poznyak A. V., Nikiforov N. G., Sobenin I. A., Orekhov A. N. (2020). The link between chronic stress and accelerated aging. Biomedicine 8:198. doi: 10.3390/biomedicines8070198, PMID: PubMed DOI PMC

Zemanová N., Bezdíček O., Michalec J., Nikolai T., Roth J., Jech R., et al. . (2016). Validity study of the Boston naming test Czech version. Česká a Slov. Neurol. a Neurochir 79/112, 307–316. doi: 10.14735/amcsnn2016307 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Directed functional connectivity of the default-mode-network of young and older healthy subjects

. 2024 Feb 21 ; 14 (1) : 4304. [epub] 20240221

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...