functional connectivity Dotaz Zobrazit nápovědu
Studie srovnávala funkční konektivitu mozkové kůry pacientů s obsedantně-kompulzivní poruchou (OCD) a zdravých kontrol pomocí korelací elektrické aktivity (proudové hustoty) kôrových voxelů zjištěné metodou LORETA (low-resolution brain electromagnetic tomography). Soubor se skládal z 16 pacientů (10 mužů a 6 žen) s OCD, užívajících stabilní medikaci bez benzodiazepinů. Aktivita tří homologních a priori vybraných oblastí (přední cingulum, horní temporální kůra a orbitofrontální kortex) byla korelována v čase s aktivitou ostatních z 2394 voxelů mozkové kůry. Individuální z-skóry získané srovnáním s normativní databází byly zpracovány pomocí randomizačně permutační statistiky. Přední cingulum a orbitofrontální kůra OCD pacientů vykazovaly nižší korelace s rozsáhlou frontotemporální oblastí pravé hemisféry zejména v pásmu nízkých frekvencí. Konektivita horní temporální kůry byla u OCD rovněž snížená, avšak méně výrazně, a vykazovala lateralizovaný, topograficky i frekvenčně odlišný vzorec. Nálezy nasvědčují tomu, že deficit funkčního spojení pravé hemisféry v oblasti inhibičních aktivit by mohl být součástí patofyziologie OCD.
This study compared cortical functional connectivity between patients with obsessive-compulsive disorder (OCD) and healthy cont rols using voxel-wise electrical activity (current density) correlations estimated by LORETA (low-resolution brain electromagnetic t omogra- phy). 16 OCD patients (10 men and 6 women) on stable, benzodiazepine-free medication participated in the study. The mean curren t density in three a priori selected homologous cortical regions (anterior cingulate, superior temporal cortex and orbitofrontal cortex) was correlated in time with current density in the remaining of 2394 cortical voxels. The individual z-scores obtained by norma tive database comparisons were analyzed with randomization-permutation statistics. In OCD patients, anterior cingulate and orbitofro ntal cortex showed significantly lower correlations with a large frontotemporal region of the right hemisphere, mainly in the low-fr equency band. Disconnection of the superior temporal cortex was less pronounced and showed a lateralized, slightly different frequency and topographic pattern. Our findings suggest that deficient right-hemispheric functional connections in inhibitory activities migh t be involved in the pathophysiology of OCD.
- MeSH
- elektroencefalografie metody statistika a číselné údaje využití MeSH
- finanční podpora výzkumu jako téma MeSH
- financování organizované MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody využití MeSH
- mezerový spoj fyziologie patologie MeSH
- mozková kůra fyziologie patologie MeSH
- obsedantně kompulzivní porucha etiologie patologie MeSH
- pilotní projekty MeSH
- regresní analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- hodnotící studie MeSH
OBJECTIVE: We investigated cognitive task-related functional connectivity (FC) in patients with temporal lobe epilepsy (TLE). Using a visual three-stimulus paradigm (VTSP), we studied cognitive large-scale networks and the impact of TLE on connectivity outside the temporal lobe. METHODS: High-density electroencephalography (EEG) was recorded during the paradigm from nineteen patients with epilepsy with hippocampal sclerosis (HS) and ten healthy controls (HCs). Scalp data were reconstructed into the source space, and FC was computed. Correlating with the neuropsychological data, possible compensatory mechanisms were investigated. RESULTS: Significant changes were found in the FC of regions outside the epileptogenic network, particularly in the attentional network. These changes were more widespread in left TLE (LTLE). There were no significant differences in task performance (accuracy, time response) in comparison with HCs, implying that there must be some mechanism reducing the impact of connectivity changes on brain functions. When correlated with neuropsychological data, we found stronger compensatory mechanisms in right TLE (RTLE). SIGNIFICANCE: Our findings confirm the hypothesis that LTLE is the more pervasive form of the disease. Even though the network alterations in TLE are severe, some mechanisms reduce the impact of epilepsy on cognitive functions; these mechanisms are more potent in RTLE. We also suggest that there are maladaptive mechanisms in LTLE.
BACKGROUND: Functional movement disorders, a common cause of neurological disabilities, can occur with heterogeneous motor manifestations including functional weakness. However, the underlying mechanisms related to brain function and connectivity are unknown. OBJECTIVE: To identify brain connectivity alterations related to functional weakness we assessed network centrality changes in a group of patients with heterogeneous motor manifestations using task-free functional MRI in combination with different network centrality approaches. METHODS: Task-free functional MRI was performed in 48 patients with heterogeneous motor manifestations including 28 patients showing functional weakness and 65 age- and sex-matched healthy controls. Functional connectivity differences were assessed using different network centrality approaches, i.e. global correlation, eigenvector centrality, and intrinsic connectivity. Motor symptom severity was assessed using The Simplified Functional Movement Disorders Rating Scale and correlated with network centrality. RESULTS: Comparing patients with and without functional weakness showed significant network centrality differences in the left temporoparietal junction and precuneus. Patients with functional weakness showed increased centrality in the same anatomical regions when comparing functional weakness with healthy controls. Moreover, in the same regions, patients with functional weakness showed a positive correlation between motor symptom severity and network centrality. This correlation was shown to be specific to functional weakness with an interaction analysis, confirming a significant difference between patients with and without functional weakness. CONCLUSIONS: We identified the temporoparietal junction and precuneus as key regions involved in brain connectivity alterations related to functional weakness. We propose that both regions may be promising targets for phenotype-specific non-invasive brain stimulation.
BACKGROUND: Patients with bipolar disorder (BD) and major depressive disorder (MDD) exhibit depressive episodes with similar symptoms despite having different and poorly understood underlying neurobiology, often leading to misdiagnosis and improper treatment. This exploratory study examined whole-brain functional connectivity (FC) using FC multivariate pattern analysis (fc-MVPA) to identify the FC patterns with the greatest ability to distinguish between currently depressed patients with BD type I (BD I) and those with MDD. METHODOLOGY: In a cross-sectional design, 41 BD I, 40 MDD patients and 63 control participants completed resting state functional magnetic resonance imaging scans. Data-driven fc-MVPA, as implemented in the CONN toolbox, was used to identify clusters with differential FC patterns between BD patients and MDD patients. The identified cluster was used as a seed in a post hoc seed-based analysis (SBA) to reveal associated connectivity patterns, followed by a secondary ROI-to-ROI analysis to characterize differences in connectivity between these patterns among BD I patients, MDD patients and controls. RESULTS: FC-MVPA identified one cluster located in the right frontal pole (RFP). The subsequent SBA revealed greater FC between the RFP and posterior cingulate cortex (PCC) and between the RFP and the left inferior/middle temporal gyrus (LI/MTG) and lower FC between the RFP and the left precentral gyrus (LPCG), left lingual gyrus/occipital cortex (LLG/OCC) and right occipital cortex (ROCC) in MDD patients than in BD patients. Compared with the controls, ROI-to-ROI analysis revealed lower FC between the RFP and the PCC and greater FC between the RFP and the LPCG, LLG/OCC and ROCC in BD patients; in MDD patients, the analysis revealed lower FC between the RFP and the LLG/OCC and ROCC and greater FC between the RFP and the LI/MTG. CONCLUSIONS: Differences in the RFP FC patterns between currently depressed patients with BD and those with MDD suggest potential neuroimaging markers that should be further examined. Specifically, BD patients exhibit increased FC between the RFP and the motor and visual networks, which is associated with psychomotor symptoms and heightened compensatory frontoparietal FC to counter distractibility. In contrast, MDD patients exhibit increased FC between the RFP and the default mode network, corresponding to sustained self-focus and rumination.
- MeSH
- bipolární porucha * patofyziologie diagnostické zobrazování MeSH
- depresivní porucha unipolární * patofyziologie diagnostické zobrazování MeSH
- dospělí MeSH
- konektom metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku metody MeSH
- mozek patofyziologie diagnostické zobrazování MeSH
- multivariační analýza MeSH
- nervová síť diagnostické zobrazování patofyziologie MeSH
- nervové dráhy patofyziologie diagnostické zobrazování MeSH
- průřezové studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Abnormal execution of several movements in a sequence is a frequent finding in schizophrenia. Successful performance of such motor acts requires correct integration of cortico-subcortical processes, particularly those related to cerebellar functions. Abnormal connectivity between cortical and cerebellar regions with resulting cognitive dysmetria has been proposed as the core dysfunction behind many signs and symptoms of schizophrenia. The aim of the present study was to assess if these proposed abnormalities in connectivity are a unifying feature of schizophrenia, or, rather, reflect a specific symptom domain of a heterogeneous disease. We predicted that abnormal functional connectivity between the motor cortex and cerebellum would be linked with abnormal performance of movement sequencing. METHODS: We examined 24 schizophrenia patients (SCH) and 24 age-, sex-, and handedness-matched healthy controls (HC) using fMRI during a modified finger-tapping task. The ability to perform movement sequencing was tested using the Neurological Evaluation Scale (NES). The subjects were categorized into two groups, with (SQ+) and without (SQ-) movement sequencing abnormalities, according to the NES-SQ score. The effects of diagnosis and movement sequencing abnormalities on the functional connectivity parameters between the motor cortex and cerebellum (MC-CRBL) and the supplementary motor cortex and cerebellum (SMA-CRBL) activated during the motor task were analyzed. RESULTS: We found no effect of diagnosis on the functional connectivity measures. There was, however, a significant effect on the SQ group: SQ + patients showed a lower level of MC-CRBL connectivity than SQ- patients and healthy controls. Moreover, the level of MC-CRBL and SMA-CRBL negatively correlated with the magnitude of NES-SQ abnormalities, but with no other NES domain. CONCLUSIONS: Abnormal cortico-cerebellar functional connectivity during the execution of a motor task is linked with movement sequencing abnormalities in schizophrenia, but not with the diagnosis of schizophrenia per se. It seems that specific patterns of inter-regional connectivity are linked with corresponding signs and symptoms of clinically heterogeneous conditions such as schizophrenia.
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mladiství MeSH
- motorické dovednosti fyziologie MeSH
- motorické korové centrum patofyziologie MeSH
- mozeček patofyziologie MeSH
- nervová síť patofyziologie MeSH
- nervové dráhy patofyziologie MeSH
- počítačové zpracování obrazu MeSH
- pohyb fyziologie MeSH
- prsty ruky fyziologie MeSH
- schizofrenie patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a "rule-in" procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting. METHODS: This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross-validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation). RESULTS: FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%). CONCLUSIONS: The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms.
- MeSH
- konverzní poruchy * diagnostické zobrazování patofyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mozek * diagnostické zobrazování patofyziologie MeSH
- reprodukovatelnost výsledků MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
Brain imaging studies in complex regional pain syndrome (CRPS) have found mixed evidence for functional and structural changes in CRPS. In this cross-sectional study, we evaluated two patient cohorts from different centers and examined functional connectivity (rsFC) in 51 CRPS patients and 50 matched controls. rsFC was compared in predefined ROI pairs, but also in non-hypothesis driven analyses. Resting state (rs)fMRI changes in default mode network (DMN) and the degree rank order disruption index (kD) were additionally evaluated. Finally, imaging parameters were correlated with clinical severity and somatosensory function. Among predefined pairs, we found only weakly to moderately lower functional connectivity between the right nucleus accumbens and bilateral ventromedial prefrontal cortex in the infra-slow oscillations (ISO) band. The unconstrained ROI-to-ROI analysis revealed lower rsFC between the periaqueductal gray matter (PAG) and left anterior insula, and higher rsFC between the right sensorimotor thalamus and nucleus accumbens. In the correlation analysis, pain was positively associated with insulo-prefrontal rsFC, whereas sensorimotor thalamo-cortical rsFC was positively associated with tactile spatial resolution of the affected side. In contrast to previous reports, we found no group differences for kD or rsFC in the DMN, but detected overall lower data quality in patients. In summary, while some of the previous results were not replicated despite the larger sample size, novel findings from two independent cohorts point to potential down-regulated antinociceptive modulation by the PAG and increased connectivity within the reward system as pathophysiological mechanisms in CRPS. However, in light of the detected systematic differences in data quality between patients and healthy subjects, validity of rsFC abnormalities in CRPS should be carefully scrutinized in future replication studies.
- MeSH
- default mode network diagnostické zobrazování patofyziologie MeSH
- dospělí MeSH
- komplexní regionální syndromy bolesti * patofyziologie diagnostické zobrazování MeSH
- konektom metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek patofyziologie diagnostické zobrazování MeSH
- nervová síť patofyziologie diagnostické zobrazování MeSH
- průřezové studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
Functional connectivity analysis is a common approach to the characterization of brain function. While studies of functional connectivity have predominantly focused on resting-state fMRI, naturalistic paradigms, such as movie watching, are increasingly being used. This ecologically valid, yet relatively unconstrained acquisition state has been shown to improve subject compliance and, potentially, enhance individual differences. However, unlike the reliability of resting-state functional connectivity, the reliability of functional connectivity during naturalistic viewing has not yet been fully established. The current study investigates the intra-session reliability of functional connectivity during naturalistic viewing sessions to extend its understanding. Using fMRI data of 24 subjects measured at rest as well as during six naturalistic viewing conditions, we quantified the split-half reliability of each condition, as well as cross-condition reliabilities. We find that intra-session reliability is relatively high for all conditions. While cross-condition reliabilities are higher for pairings of two naturalistic viewing conditions, split-half reliability is highest for the resting state. Potential sources of variability across the conditions, as well as the strengths and limitations of using intra-session reliability as a measure in naturalistic viewing, are discussed.
OBJECTIVE: Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. APPROACH: The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component's time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. MAIN RESULTS: We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. SIGNIFICANCE: Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.
- MeSH
- časové faktory MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- nervová síť diagnostické zobrazování fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: Abnormal task-related activation and connectivity is present in schizophrenia. The aim of this study was the analysis of functional networks in schizophrenia patients in remission after the first episode. EXPERIMENTAL DESIGN: Twenty-nine male patients in remission after the first episode of schizophrenia and 22 healthy controls underwent examination by functional magnetic resonance during verbal fluency tasks (VFT). The functional connectivity of brain networks was analyzed using independent component analysis. RESULTS: The patients showed lower activation of the salience network during VFT. They also showed lower deactivation of the default mode network (DMN) during VFT processing. Spectral analysis of the component time courses showed decreased power in slow frequencies of signal fluctuations in the salience and DMNs and increased power in higher frequencies in the left frontoparietal cortex reflecting higher fluctuations of the network activity. Moreover, there was decreased similarity of component time courses in schizophrenia—the patients had smaller negative correlation between VFT activated and deactivated networks, and smaller positive correlations between DMN subcomponents. CONCLUSIONS: There is still an abnormal functional connectivity of several brain networks in remission after the first episode of schizophrenia. The effect of different treatment modalities on brain connectivity, together with temporal dynamics of this functional abnormality should be the objective of further studies to assess its potential as a marker of disease stabilization.
- MeSH
- analýza hlavních komponent MeSH
- dospělí MeSH
- funkční lateralita MeSH
- kyslík krev MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku * MeSH
- mladý dospělý MeSH
- mozek krevní zásobení patologie MeSH
- nervové dráhy patologie MeSH
- počítačové zpracování obrazu MeSH
- psychiatrické posuzovací škály MeSH
- schizofrenie patologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH