Altered sensorimotor fMRI directed connectivity in Parkinson's disease patients

. 2021 Mar ; 53 (6) : 1976-1987. [epub] 20201213

Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33222299

Dopamine depletion in the axons of Parkinson's disease (PD) patients precedes depletion in cell bodies thus proposing that macroscopic connectivity can be used to understand disease mechanism. A novel multivariate functional connectivity analysis, based on high order coherence among four fMRI BOLD signals was applied on resting-state fMRI data of controls and PD patients (OFF and ON medication states) and unidirectional multiple-region pathways in the sensorimotor system were identified. Pathways were classified as "preserved" (unaffected by the disease), "damaged" (not observed in patients) and "corrected" (observed in controls and in PD-ON state). The majority of all pathways were feedforward, most of them with the pattern "S1→M1→SMA." Of these pathways, 67% were "damaged," 28% "preserved," and 5% "corrected." Prefrontal cortex (PFC) afferent and efferent pathways that corresponded to goal directed and habitual activities corresponded to recurrent circuits. Eighty-one percent of habitual afferent had internal cue (i.e., M1→S1→), of them 79% were "damaged" and the rest "preserved." All goal-directed afferent had external cue (i.e., S1→M1→) with third "damaged," third "preserved," and third "corrected." Corrected pathways were initiated in the dorsolateral PFC. Reduced connectivity of the SMA and PFC resulted from reduced sensorimotor afferent to these regions. Reduced sensorimotor internal cues to the PFC resulted with reduced habitual processes. Levodopa effects were for pathways that started in region reach with dopamine receptors. This methodology can enrich understudying of PD mechanisms in other (e.g., the default mode network) systems.

Zobrazit více v PubMed

Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Progress in Brain Research, 85, 119-146.

Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193-200. https://doi.org/10.1016/j.tics.2008.02.004

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37, 90-101. https://doi.org/10.1016/j.neuroimage.2007.04.042

Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436-1438. https://doi.org/10.1126/science.2402638

Buhmann, C., Glauche, V., Sturenburg, H. J., Oechsner, M., Weiller, C., & Buchel, C. (2003). Pharmacologically modulated fMRI-cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain, 126, 451-461. https://doi.org/10.1093/brain/awg033

Cheng, H. C., Ulane, C. M., & Burke, R. E. (2010). Clinical progression in Parkinson disease and the neurobiology of axons. Annals of Neurology, 67, 715-725. https://doi.org/10.1002/ana.21995

Cole, M. W., Bagic, A., Kass, R., & Schneider, W. (2010). Prefrontal dynamics underlying rapid instructed task learning reverse with practice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 14245-14254. https://doi.org/10.1523/JNEUROSCI.1662-10.2010

DeLong, M. R. (1990). Primate model of movement disorders of the basal ganglia origin. Trends Neuroscience, 13, 281-285.

DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20-24. https://doi.org/10.1001/archneur.64.1.20

Descarries, L., Berube-Carriere, N., Riad, M., Bo, G. D., Mendez, J. A., & Trudeau, L. E. (2008). Glutamate in dopamine neurons: Synaptic versus diffuse transmission. Brain Research Reviews, 58, 290-302. https://doi.org/10.1016/j.brainresrev.2007.10.005

Deuschl, G., Schupbach, M., Knudsen, K., Pinsker, M. O., Cornu, P., Rau, J., Agid, Y., & Schade-Brittinger, C. (2013). Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson's disease: Concept and standards of the EARLYSTIM-study. Parkinsonism & Related Disorders, 19, 56-61. https://doi.org/10.1016/j.parkreldis.2012.07.004

Gao, L. L., & Wu, T. (2016). The study of brain functional connectivity in Parkinson's disease. Translational Neurodegeneration, 5, 18. https://doi.org/10.1186/s40035-016-0066-0

Goelman, G., & Dan, R. (2017). Multiple-region directed functional connectivity based on phase delays. Human Brain Mapping, 38, 1374-1386. https://doi.org/10.1002/hbm.23460

Goelman, G., Dan, R., & Keadan, T. (2018). Characterizing directed functional pathways in the visual system by multivariate nonlinear coherence of fMRI data. Science Reports, 8, 16362. https://doi.org/10.1038/s41598-018-34672-5

Goelman, G., Dan, R., Stossel, G., Tost, H., Meyer-Lindenberg, A., & Bilek, E. (2019). Bidirectional signal exchanges and their mechanisms during joint attention interaction - A hyperscanning fMRI study. NeuroImage, 198, 242-254. https://doi.org/10.1016/j.neuroimage.2019.05.028

Harrison, E. C., Horin, A. P., & Earhart, G. M. (2018). Internal cueing improves gait more than external cueing in healthy adults and people with Parkinson disease. Scientific Reports, 8, 15525.

Hoshiyama, M., Kaneoke, Y., Koike, Y., Takahashi, A., & Watanabe, S. (1994). Hypokinesia of associated movement in Parkinson's disease: A symptom in early stages of the disease. Journal of Neurology, 241, 517-521. https://doi.org/10.1007/BF00873512

Koller, W. C., & Rueda, M. G. (1998). Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology, 50, S11-S14; discussion S44-18. https://doi.org/10.1212/WNL.50.6_Suppl_6.S11

Muller, K., Lohmann, G., Neumann, J., Grigutsch, M., Mildner, T., & von Cramon, D. Y. (2004). Investigating the wavelet coherence phase of the BOLD signal. Journal of Magnetic Resonance Imaging, 20, 145-152. https://doi.org/10.1002/jmri.20064

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320-341. https://doi.org/10.1016/j.neuroimage.2013.08.048

Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., Agid, Y., DeLong, M. R., & Obeso, J. A. (2010). Goal-directed and habitual control in the basal ganglia: Implications for Parkinson's disease. Nature Reviews. Neuroscience, 11, 760-772.

Sakai, K., & Passingham, R. E. (2003). Prefrontal interactions reflect future task operations. Nature Neuroscience, 6, 75-81. https://doi.org/10.1038/nn987

Sakai, K., & Passingham, R. E. (2006). Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 1211-1218. https://doi.org/10.1523/JNEUROSCI.3887-05.2006

Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28, 1178-1193. https://doi.org/10.1002/hbm.20346

Stam, C. J., & van Straaten, E. C. (2012). Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. NeuroImage, 62, 1415-1428. https://doi.org/10.1016/j.neuroimage.2012.05.050

Taber, K. H., & Hurley, R. A. (2014). Volume transmission in the brain: Beyond the synapse. The Journal of Neuropsychiatry and Clinical Neurosciences, 26, iv-4. https://doi.org/10.1176/appi.neuropsych.13110351

Tagliaferro, P., & Burke, R. E. (2016). Retrograde axonal degeneration in Parkinson disease. Journal of Parkinson's Disease, 6, 1-15. https://doi.org/10.3233/JPD-150769

Tessitore, A., Giordano, A., De Micco, R., Russo, A., & Tedeschi, G. (2014). Sensorimotor connectivity in Parkinson's disease: The role of functional neuroimaging. Frontiers in Neurology, 5, 180.

Thobois, S., Dominey, P., Decety, J., Pollak, P., Gregoire, M. C., & Broussolle, E. (2000). Overactivation of primary motor cortex is assymetrical in hemiparkinsonian patients. NeuroReport, 11, 785-789.

Torrence, C., & Compo, G. P. (1998). Wavelet Analysis. The Bulletin of the American Meteorological Society, 79, 61-78.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273-289. https://doi.org/10.1006/nimg.2001.0978

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect, 2, 125-141.

Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson's disease. Brain: A Journal of Neurology, 128, 2250-2259. https://doi.org/10.1093/brain/awh569

Wu, T., Wang, L., Chen, Y., Zhao, C., Li, K., & Chan, P. (2009). Changes of functional connectivity of the motor network in the resting state in Parkinson's disease. Neuroscience Letters, 460, 6-10. https://doi.org/10.1016/j.neulet.2009.05.046

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...