TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26979666
PubMed Central
PMC4793247
DOI
10.1038/srep23199
PII: srep23199
Knihovny.cz E-zdroje
- MeSH
- arabinosa chemická syntéza MeSH
- dimerizace MeSH
- formaldehyd chemie MeSH
- katalýza MeSH
- planetární evoluce MeSH
- původ života MeSH
- ribosa chemická syntéza MeSH
- sacharidy chemická syntéza MeSH
- titan chemie MeSH
- xylosa chemická syntéza MeSH
- Země (planeta) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arabinosa MeSH
- formaldehyd MeSH
- formose sugars MeSH Prohlížeč
- ribosa MeSH
- sacharidy MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- xylosa MeSH
Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth's history about 4-3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde.
Zobrazit více v PubMed
Breslow R. On the mechanism of the formose reaction. Tetrahedron Lett. 1, 22–26 (1959).
Butlerow A. Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 120, 295–298 (1861).
Kim H.-J. et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am. Chem. Soc. 133, 9457–9468 (2011). PubMed
Hollis J. M., Vogel S. N., Snyder L. E., Jewell P. R. & Lovas F. J. The spatial scale of glycolaldehyde in the galactic center. Astrophys. J. 554, L81–L85 (2001).
Ricardo A., Carrigan M. A., Olcott A. N. & Benner S. A. Borate minerals stabilize ribose. Science 303, 196–196 (2004). PubMed
Pestunova O., Simonov A., Snytnikov V., Stoyanovsky V. & Parmon V. In Space Life Sciences: Astrobiology: Steps toward Origin of Life and Titan before Cassini Vol. 36 Advances in Space Research (eds Bernstein M., NavarroGonzalez R., & Raulin R.) 214–219 (Elsevier Science Ltd, 2005).
Harman C. E., Kasting J. F. & Wolf E. T. Atmospheric production of glycolaldehyde under hazy prebiotic conditions. Orig. Life Evol. Biosph. 43, 77–98 (2013). PubMed
Ricardo A., Carrigan M. A., Olcott A. N. & Benner S. A. Borate minerals stabilize ribose. Science 303, 196 (2004). PubMed
Benner S. A., Kim H.-J. & Carrigan M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025–2034 (2012). PubMed
Neveu M., Kim H.-J. & Benner S. A. The “strong” RNA world hypothesis: fifty years old. Astrobiology 13, 391–403 (2013). PubMed
Zubay G. Studies on the lead-catalyzed synthesis of aldopentoses. Orig. Life Evol. Biosph. 28, 13–26 (1998). PubMed
Reid C. & Orgel L. E. Model for origin of monosaccharides: synthesis of sugars in potentially prebiotic conditions. Nature 216, 455–455 (1967). PubMed
Weber A. L. & Pizzarello S. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc. Natl. Acad. Sci., USA 103, 12713–12717 (2006). PubMed PMC
Ferus M. et al. On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event. J. Am. Chem. Soc. 134, 20788–20796 (2012). PubMed
Ferus M. et al. High-energy chemistry of formamide: a simpler way for nucleobase formation. J. Phys. Chem. A 118, 719–736 (2014). PubMed
Ferus M. et al. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA 112, 657–662 (2015). PubMed PMC
Carbonniere P. & Pouchan C. Modelization of vibrational spectra beyond the harmonic approximation from an iterative variation–perturbation scheme: the four conformers of the glycolaldehyde. Theor Chem Acc 131, 1–8 (2012).
Civis S. et al. Room temperature spontaneous conversion of OCS to CO2 on the anatase TiO2 surface. Chem. Commun. 50, 7712–7715 (2014). PubMed
Kavan L. et al. Oxygen-isotope labeled titania: (TiO2)-O18. Phys. Chem. Chem. Phys. 13, 11583–11586 (2011). PubMed
Aschauer U. et al. Influence of subsurface defects on the surface reactivity of TiO2: water on anatase (101). J. Phys. Chem. C 114, 1278–1284 (2010).
Giannozzi P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condensed Mat. 21, 395502 (2009). PubMed
Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Bowles J. F. W., Howie R. A., Vaughan D. J. & Zussman J. Rock-Forming Minerals. Vol. 5A (The Geological Society of London, 2011).
Han J. & Brearley A. J. Formation of TiO2 nanoparticles in a CAI-like object from an AOA in the Alpha 77307 CO3.0 carbonaceous chondrite. Meteorit. Planet. Sci. 46(S1), abstract No. 5190 (2011).
Wang A., Kuebler K., Jolliff B. & Haskin L. A. Mineralogy of a Martian meteorite as determined by Raman spectroscopy. J. Raman Spectrosc. 35, 504–514 (2004).
Zürcher L. & Kring D. A. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteorit. Planet. Sci. 39, 1199–1221 (2004).
Civiš S., Ferus M., Kubát P., Zukalová M. & Kavan L. Oxygen-isotope exchange between CO2 and solid Ti18O2. J. Phys. Chem. C 115, 11156–11162 (2011).
Cleaves H. J. The prebiotic geochemistry of formaldehyde. Precambrian Res. 164, 111–118 (2008).
Miller S. L. & Urey H. C. Organic compound synthesis on the primitive Earth. Science 130, 245–251 (1959). PubMed
Pinto J. P., Gladstone G. R. & Yung Y. L. Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210, 183–184 (1980). PubMed
Schutte W. A., Allamandola L. J. & Sandford S. A. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus 104, 118–137 (1993). PubMed
Fomenkova M. N., Chang S. & Mukhin L. M. Carbonaceous components in the comet Halley dust. Geochim. Cosmochim. Acta 58, 4503–4512 (1994). PubMed
Biver N. et al. Chemical composition diversity among 24 comets observed at radio wavelengths. Earth Moon Planets 90, 323–333 (2002).
Charnley S. B. & Rodgers S. D. Interstellar reservoirs of cometary matter. Space Sci. Rev. 138, 59–73 (2008).
Mumma M. J. & Charnley S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).
Palmer P., Zuckerman B., Buhl D. & Snyder L. E. Formaldehyde absorption in dark nebulae. Astrophys. J. 156, L147-& (1969).
Koeberl C. Impact processes on the early Earth. Elements 2, 211–216 (2006).
Callahan M. P. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 108, 13995–13998 (2011). PubMed PMC
Cooper G. et al. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879–883 (2001). PubMed
Henkelman G., Uberuaga B. P. & Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
Krukau A. V., Vydrov O. A., Izmaylov A. F. & Scuseria G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, (2006). PubMed
Troullier N. & Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 43, 1993–2006 (1991). PubMed
Stein E. NIST standard reference database 1A NIST/EPA/NIH mass spectral library (NIST 08) and NIST mass spectral search program (Version 2.0f), user’s guide. The NIST mass spectrometry data center. http://www.nist.gov/srd/nist1a.cfm.