TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth

. 2016 Mar 16 ; 6 () : 23199. [epub] 20160316

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26979666

Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth's history about 4-3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde.

Erratum v

PubMed

Zobrazit více v PubMed

Breslow R. On the mechanism of the formose reaction. Tetrahedron Lett. 1, 22–26 (1959).

Butlerow A. Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 120, 295–298 (1861).

Kim H.-J. et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am. Chem. Soc. 133, 9457–9468 (2011). PubMed

Hollis J. M., Vogel S. N., Snyder L. E., Jewell P. R. & Lovas F. J. The spatial scale of glycolaldehyde in the galactic center. Astrophys. J. 554, L81–L85 (2001).

Ricardo A., Carrigan M. A., Olcott A. N. & Benner S. A. Borate minerals stabilize ribose. Science 303, 196–196 (2004). PubMed

Pestunova O., Simonov A., Snytnikov V., Stoyanovsky V. & Parmon V. In Space Life Sciences: Astrobiology: Steps toward Origin of Life and Titan before Cassini Vol. 36 Advances in Space Research (eds Bernstein M., NavarroGonzalez R., & Raulin R.) 214–219 (Elsevier Science Ltd, 2005).

Harman C. E., Kasting J. F. & Wolf E. T. Atmospheric production of glycolaldehyde under hazy prebiotic conditions. Orig. Life Evol. Biosph. 43, 77–98 (2013). PubMed

Ricardo A., Carrigan M. A., Olcott A. N. & Benner S. A. Borate minerals stabilize ribose. Science 303, 196 (2004). PubMed

Benner S. A., Kim H.-J. & Carrigan M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025–2034 (2012). PubMed

Neveu M., Kim H.-J. & Benner S. A. The “strong” RNA world hypothesis: fifty years old. Astrobiology 13, 391–403 (2013). PubMed

Zubay G. Studies on the lead-catalyzed synthesis of aldopentoses. Orig. Life Evol. Biosph. 28, 13–26 (1998). PubMed

Reid C. & Orgel L. E. Model for origin of monosaccharides: synthesis of sugars in potentially prebiotic conditions. Nature 216, 455–455 (1967). PubMed

Weber A. L. & Pizzarello S. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc. Natl. Acad. Sci., USA 103, 12713–12717 (2006). PubMed PMC

Ferus M. et al. On the road from formamide ices to nucleobases: IR-spectroscopic observation of a direct reaction between cyano radicals and formamide in a high-energy impact event. J. Am. Chem. Soc. 134, 20788–20796 (2012). PubMed

Ferus M. et al. High-energy chemistry of formamide: a simpler way for nucleobase formation. J. Phys. Chem. A 118, 719–736 (2014). PubMed

Ferus M. et al. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA 112, 657–662 (2015). PubMed PMC

Carbonniere P. & Pouchan C. Modelization of vibrational spectra beyond the harmonic approximation from an iterative variation–perturbation scheme: the four conformers of the glycolaldehyde. Theor Chem Acc 131, 1–8 (2012).

Civis S. et al. Room temperature spontaneous conversion of OCS to CO2 on the anatase TiO2 surface. Chem. Commun. 50, 7712–7715 (2014). PubMed

Kavan L. et al. Oxygen-isotope labeled titania: (TiO2)-O18. Phys. Chem. Chem. Phys. 13, 11583–11586 (2011). PubMed

Aschauer U. et al. Influence of subsurface defects on the surface reactivity of TiO2: water on anatase (101). J. Phys. Chem. C 114, 1278–1284 (2010).

Giannozzi P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condensed Mat. 21, 395502 (2009). PubMed

Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed

Bowles J. F. W., Howie R. A., Vaughan D. J. & Zussman J. Rock-Forming Minerals. Vol. 5A (The Geological Society of London, 2011).

Han J. & Brearley A. J. Formation of TiO2 nanoparticles in a CAI-like object from an AOA in the Alpha 77307 CO3.0 carbonaceous chondrite. Meteorit. Planet. Sci. 46(S1), abstract No. 5190 (2011).

Wang A., Kuebler K., Jolliff B. & Haskin L. A. Mineralogy of a Martian meteorite as determined by Raman spectroscopy. J. Raman Spectrosc. 35, 504–514 (2004).

Zürcher L. & Kring D. A. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteorit. Planet. Sci. 39, 1199–1221 (2004).

Civiš S., Ferus M., Kubát P., Zukalová M. & Kavan L. Oxygen-isotope exchange between CO2 and solid Ti18O2. J. Phys. Chem. C 115, 11156–11162 (2011).

Cleaves H. J. The prebiotic geochemistry of formaldehyde. Precambrian Res. 164, 111–118 (2008).

Miller S. L. & Urey H. C. Organic compound synthesis on the primitive Earth. Science 130, 245–251 (1959). PubMed

Pinto J. P., Gladstone G. R. & Yung Y. L. Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210, 183–184 (1980). PubMed

Schutte W. A., Allamandola L. J. & Sandford S. A. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus 104, 118–137 (1993). PubMed

Fomenkova M. N., Chang S. & Mukhin L. M. Carbonaceous components in the comet Halley dust. Geochim. Cosmochim. Acta 58, 4503–4512 (1994). PubMed

Biver N. et al. Chemical composition diversity among 24 comets observed at radio wavelengths. Earth Moon Planets 90, 323–333 (2002).

Charnley S. B. & Rodgers S. D. Interstellar reservoirs of cometary matter. Space Sci. Rev. 138, 59–73 (2008).

Mumma M. J. & Charnley S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

Palmer P., Zuckerman B., Buhl D. & Snyder L. E. Formaldehyde absorption in dark nebulae. Astrophys. J. 156, L147-& (1969).

Koeberl C. Impact processes on the early Earth. Elements 2, 211–216 (2006).

Callahan M. P. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 108, 13995–13998 (2011). PubMed PMC

Cooper G. et al. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879–883 (2001). PubMed

Henkelman G., Uberuaga B. P. & Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

Krukau A. V., Vydrov O. A., Izmaylov A. F. & Scuseria G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, (2006). PubMed

Troullier N. & Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 43, 1993–2006 (1991). PubMed

Stein E. NIST standard reference database 1A NIST/EPA/NIH mass spectral library (NIST 08) and NIST mass spectral search program (Version 2.0f), user’s guide. The NIST mass spectrometry data center. http://www.nist.gov/srd/nist1a.cfm.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace