Infrared Spectra of Small Radicals for Exoplanetary Spectroscopy: OH, NH, CN and CH: The State of Current Knowledge
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
883830
European Research Council - International
PubMed
37110598
PubMed Central
PMC10143568
DOI
10.3390/molecules28083362
PII: molecules28083362
Knihovny.cz E-zdroje
- Klíčová slova
- atmospheric chemistry, infrared spectra, radicals, short living radicals, spectroscopy, unstable species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this study, we present a current state-of-the-art review of middle-to-near IR emission spectra of four simple astrophysically relevant molecular radicals-OH, NH, CN and CH. The spectra of these radicals were measured by means of time-resolved Fourier transform infrared spectroscopy in the 700-7500 cm-1 spectral range and with 0.07-0.02 cm-1 spectral resolution. The radicals were generated in a glow discharge of gaseous mixtures in a specially designed discharge cell. The spectra of short-lived radicals published here are of great importance, especially for the detailed knowledge and study of the composition of exoplanetary atmospheres in selected new planets. Today, with the help of the James Webb telescope and upcoming studies with the help of Plato and Ariel satellites, when the investigated spectral area is extended into the infrared spectral range, it means that detailed knowledge of the infrared spectra of not only stable molecules but also the spectra of short-lived radicals or ions, is indispensable. This paper follows a simple structure. Each radical is described in a separate chapter, starting with historical and actual theoretical background, continued by our experimental results and concluded by spectral line lists with assigned notation.
Department of Chemistry and Biochemistry Old Dominion University Norfolk VA 23529 USA
Department of Physics and Astronomy University College London Gower Street London WC1E 6BT UK
Zobrazit více v PubMed
Zuckerman B. Recognition of the First Observational Evidence of an Extrasolar Planetary System; Proceedings of the 19th European Workshop on White Dwarfs; Montreal, QC, Canada. 11–15 August 2014.
Campbell B., Walker G.A., Yang S. A search for substellar companions to solar-type stars. Astrophys. J. 1988;331:902–921. doi: 10.1086/166608. DOI
Mayor M., Queloz D. A Jupiter-mass companion to a solar-type star. Nature. 1995;378:355–359. doi: 10.1038/378355a0. DOI
Tinetti G., Drossart P., Eccleston P., Hartogh P., Heske A., Leconte J., Micela G., Ollivier M., Pilbratt G., Puig L., et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 2018;46:135–209. doi: 10.1007/s10686-018-9598-x. DOI
Guilluy G., Sozzetti A., Giacobbe P., Bonomo A.S., Micela G. On the synergy between Ariel and ground-based high-resolution spectroscopy. Exp. Astron. 2022;53:655–677. doi: 10.1007/s10686-021-09824-7. DOI
Ryder G. Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. Planets. 2002;107:6–1–6-13. doi: 10.1029/2001JE001583. DOI
Genda H., Brasser R., Mojzsis S.J. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 2017;480:25–32. doi: 10.1016/j.epsl.2017.09.041. DOI
Bottke W.F., Vokrouhlický D., Marchi S., Swindle T., Scott E.R.D., Weirich J.R., Levison H. Dating the Moon-forming impact event with asteroidal meteorites. Science. 2015;348:321–323. doi: 10.1126/science.aaa0602. PubMed DOI
Budde G., Burkhardt C., Kleine T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 2019;3:736–741. doi: 10.1038/s41550-019-0779-y. DOI
Nesvorný D., Roig F., Bottke W.F. Modeling the historical flux of planetary impactors. Astron. J. 2017;153:103. doi: 10.3847/1538-3881/153/3/103. DOI
Chyba C., Sagan C. Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules—An Inventory for the Origin of Life. Nature. 1992;355:125–132. doi: 10.1038/355125a0. PubMed DOI
Koeberl C. The record of impact processes on the early Earth: A review of the first 2.5 billion years. Geol. Soc. Am. Spec. Pap. 2006;405:1–22.
Lunine J.I. Physical conditions on the early Earth. Philos. Trans. R. Soc. B Biol. Sci. 2006;361:1721–1731. doi: 10.1098/rstb.2006.1900. PubMed DOI PMC
Kuwahara H., Sugita S. The molecular composition of impact-generated atmospheres on terrestrial planets during the post-accretion stage. Icarus. 2015;257:290–301. doi: 10.1016/j.icarus.2015.05.007. DOI
Babankova D., Civiš S., Juha L., Bittner M., Cihelka J., Pfeifer M., Skála J., Bartnik A., Fiedorowicz H., Mikolajczyk J., et al. Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures. J. Phys. Chem. A. 2006;110:12113–12120. doi: 10.1021/jp063689o. PubMed DOI
Ferus M., Pietrucci F., Saitta A.M., Knížek A., Kubelik P., Ivanek O., Shestivská V., Civiš S. Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA. 2017;114:4306–4311. doi: 10.1073/pnas.1700010114. PubMed DOI PMC
Ferus M., Nesvorný D., Šponer J.E., Kubelík P., Michalčíková R., Shestivská V., Šponer J., Civiš S. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA. 2015;112:657–662. doi: 10.1073/pnas.1412072111. PubMed DOI PMC
Ferus M., Nesvorný D., Šponer J., Kubelík P., Michalčíková R., Shestivská V., Šponer J.E., Civiš S. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. J. Phys. Chem. 2014;118:719–736. doi: 10.1021/jp411415p. PubMed DOI
Ferus M., Civis S., Mládek A., Šponer J., Juha L., Šponer J.E. On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction between Cyano Radicals and Formamide in a High-Energy Impact Event. J. Am. Chem. Soc. 2012;134:20788–20796. doi: 10.1021/ja310421z. PubMed DOI
Civiš S., Szabla R., Szyja B.M.B.M., Smykowski D., Ivanek O., Knízek A., Kubelík P., Šponer J.E., Ferus M., Šponer J.E., et al. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Sci. Rep. 2016;6:23199. doi: 10.1038/srep23199. PubMed DOI PMC
Civis S., Juha L., Babankova D., Cvacka J., Frank O., Jehlicka J., Kralikova B., Krasa J., Kubat P., Muck A., et al. Amino acid formation induced by high-power laser in CO2/CO-N-2-H2O gas mixtures. Chem. Phys. Lett. 2004;386:169–173. doi: 10.1016/j.cplett.2004.01.034. DOI
Ferus M., Kubelík P., Knížek A., Pastorek A., Sutherland J., Civiš S. High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth. Sci. Rep. 2017;7:6275. doi: 10.1038/s41598-017-06489-1. PubMed DOI PMC
Civiš S., Knížek A., Ivanek O., Kubelík P., Zukalová M., Kavan L., Ferus M. The origin of methane and biomolecules from a CO 2 cycle on terrestrial planets. Nat. Astron. 2017;1:721. doi: 10.1038/s41550-017-0260-8. DOI
Strom R.G., Schaber G.G., Dawson D.D. The global resurfacing of Venus. J. Geophys. Res. Planets. 1994;99:10899–10926. doi: 10.1029/94JE00388. DOI
Marchi S., Chapman C.R., Fassett C.I., Head J.W., Bottke W.F., Strom R.G. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature. 2013;499:59. doi: 10.1038/nature12280. PubMed DOI
Erickson T.M., Kirkland C.L., Timms N.E., Cavosie A.J., Davison T.M. Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest recognised meteorite impact structure. Nat. Commun. 2020;11:300. doi: 10.1038/s41467-019-13985-7. PubMed DOI PMC
Schlichting H.E., Warren P.H., Yin Q.-Z. The last stages of terrestrial planet formation: Dynamical friction and the late veneer. Astrophys. J. 2012;752:8. doi: 10.1088/0004-637X/752/1/8. DOI
Abramov O., Mojzsis S.J. Thermal effects of impact bombardments on Noachian Mars. Earth Planet Sci. Lett. 2016;442:108–120. doi: 10.1016/j.epsl.2016.02.035. DOI
Grimm R.E., Solomon S.C. Reports of Planetary Geology and Geophysics Program—1987. NASA office of space science and applications; Washington, DC, USA: 1988.
Sprague A., Warell J., Cremonese G., Langevin Y., Helbert J., Wurz P., Veselovsky I., Orsini S., Milillo A. In: Mercury. Balogh A., Ksanfomality L., von Steiger R., editors. Springer; Berlin/Heidelberg, Germany: 2007.
Brasser R., Mojzsis S.J., Werner S.C., Matsumura S., Ida S. Late veneer and late accretion to the terrestrial planets. Earth Planet Sci. Lett. 2016;455:85–93. doi: 10.1016/j.epsl.2016.09.013. DOI
Sinclair C.A., Wyatt M.C., Morbidelli A., Nesvorný D. Evolution of the Earth’s atmosphere during Late Veneer accretion. Mon. Not. R. Astron. Soc. 2020;499:5334–5362. doi: 10.1093/mnras/staa3210. DOI
Hashimoto G.L., Abe Y., Sugita S. The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 2007;112:E05010. doi: 10.1029/2006JE002844. DOI
Brucato J.R., Baratta G.A., Strazzulla G. An infrared study of pure and ion irradiated frozen formamide. Astron. Astrophys. 2006;455:395–399. doi: 10.1051/0004-6361:20065095. DOI
Khare B.N., Sagan C., Thomson W.R., Arakawa E.T., Meisse C., Tuminello P.S. Optical Properties of Poly-HCN and their Astronomical Applications. Can. J. Chem. 1994;72:678–694. doi: 10.1139/v94-093. PubMed DOI
Chyba C.F., Thomas P.J., Brookshaw L., Sagan C. Cometary Delivery of Organic Molecules to the Early Earth. Science. 1990;249:366–373. doi: 10.1126/science.11538074. PubMed DOI
Schaefer L., Fegley B. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus. 2007;186:462–483. doi: 10.1016/j.icarus.2006.09.002. DOI
Hazen R.M., Sverjensky D.A. Mineral Surfaces, Geochemical Complexities, and the Origins of Life. Cold Spring Harb. Perspect. Biol. 2010;2:1–21. doi: 10.1101/cshperspect.a002162. PubMed DOI PMC
Jenniskens P., Wilson M.A., Packan D., Laux C.O., Krüger C.H., Boyd I.D., Popova O.P., Fonda M. Meteors: A Delivery Mechanism of Organic Matter to the Early Earth. Leonid Storm Res. 1998;82:57–70.
Zahnle K., Mac Low M.M., Lodders K., Fegley B., Jr. Sulfur chemistry in the wake of comet Shoemaker-Levy 9. Geophys. Res. Lett. 1995;22:1593–1596. doi: 10.1029/95GL01190. DOI
Ferus M., Pietrucci F., Saitta A.M., Ivanek O., Knizek A., Kubelik P., Krus M., Juha L., Dudzak R., Dostál J., et al. Prebiotic synthesis initiated in formaldehyde by laser plasma simulating high-velocity impacts. A&A. 2019;626:A52.
Rimmer P.B.B., Ferus M., Waldmann I.P.P., Knížek A., Kalvaitis D., Ivanek O., Kubelík P., Yurchenko S.N.N., Burian T., Dostál J., et al. Identifiable Acetylene Features Predicted for Young Earth-like Exoplanets with Reducing Atmospheres Undergoing Heavy Bombardment. Astrophys. J. 2019;888:21. doi: 10.3847/1538-4357/ab55e8. DOI
Hill R.D. An efficient lightning energy-source on the early Earth. Orig. Life Evol. Biosph. 1992;22:277–285. doi: 10.1007/BF01810857. PubMed DOI
Chyba C., Sagan C. Electrical Energy Sources for Organic Synthesis on the Early Earth. Orig. Life Evol. Biosph. 1991;21:3–17. doi: 10.1007/BF01809509. PubMed DOI
Johnson A.P., Cleaves H.J., Dworkin J.P., Glavin D.P., Lazcano A., Bada J.L. The Miller volcanic spark discharge experiment. Science. 2008;322:404. doi: 10.1126/science.1161527. PubMed DOI
Ferus M., Laitl V., Knizek A., Kubelík P., Sponer J., Kára J., Lefloch B., Cassone G., Civiš S. HNCO-based synthesis of formamide in planetary atmospheres. Astron. Astrophys. 2018;616:A150. doi: 10.1051/0004-6361/201833003. DOI
Yuasa S., Flory D., Basile B., Oró J. Abiotic Synthesis of Purines and other heterocyclic compounds by the action of electrical Discharges. J. Mol. Evol. 1984;21:76–80. doi: 10.1007/BF02100630. PubMed DOI
Miller S.L., Schlesinger G. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds. Adv. Space Res. 1983;3:47–53. doi: 10.1016/0273-1177(83)90040-6. PubMed DOI
Smith B.A., Soderblom L.A., Johnson T.V., Ingersoll A.P., Collins S.A., Shoemaker E.M., Hunt G.E., Masursky H., Carr M.H., Davies M.E., et al. The Jupiter system through the eyes of Voyager 1. Science. 1979;204:951–972. doi: 10.1126/science.204.4396.951. PubMed DOI
Borucki W.J., Magalhães J.A. Analysis of Voyager 2 images of Jovian lightning. Icarus. 1992;96:1–14. doi: 10.1016/0019-1035(92)90002-O. DOI
Little B., Anger C.D., Ingersoll A.P., Vasavada A.R., Senske D.A., Breneman H.H., Borucki W.J., Galileo SSI Team Galileo images of lightning on Jupiter. Icarus. 1999;142:306–323. doi: 10.1006/icar.1999.6195. DOI
Dyudina U.A., Del Genio A.D., Ingersoll A.P., Porco C.C., West R.A., Vasavada A.R., Barbara J.M. Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem. Icarus. 2004;172:24–36. doi: 10.1016/j.icarus.2004.07.014. DOI
Baines K.H., Simon-Miller A.A., Orton G.S., Weaver H.A., Lunsford A., Momary T.W., Spencer J., Cheng A.F., Reuter D.C., Jennings D.E., et al. Polar lightning and decadal-scale cloud variability on Jupiter. Science. 2007;318:226–229. doi: 10.1126/science.1147912. PubMed DOI
Gurnett D.A., Shaw R.R., Anderson R.R., Kurth W.S., Scarf F.L. Whistlers observed by Voyager 1: Detection of lightning on Jupiter. Geophys. Res. Lett. 1979;6:511–514. doi: 10.1029/GL006i006p00511. DOI
Akalin F., Gurnett D.A., Averkamp T.F., Persoon A.M., Santolik O., Kurth W.S., Hospodarsky G.B. First whistler observed in the magnetosphere of Saturn. Geophys. Res. Lett. 2006;33:L20107. doi: 10.1029/2006GL027019. DOI
Zarka P., Pedersen B.M. Radio detection of Uranian lightning by Voyager 2. Nature. 1986;323:605–608. doi: 10.1038/323605a0. DOI
Gurnett D.A., Kurth W.S., Cairns I.H., Granroth L.J. Whistlers in Neptune’s magnetosphere: Evidence of atmospheric lightning. J. Geophys. Res. Space Phys. 1990;95:20967–20976. doi: 10.1029/JA095iA12p20967. DOI
Kammer J.A., Shemansky D.E., Zhang X., Yung Y.L. Composition of Titan’s upper atmosphere from Cassini UVIS EUV stellar occultations. Planet. Space Sci. 2013;88:86–92. doi: 10.1016/j.pss.2013.08.003. DOI
Fischer G., Tokano T., Macher W., Lammer H., Rucker H.O. Energy dissipation of possible Titan lightning strokes. Planet. Space Sci. 2004;52:447–458. doi: 10.1016/j.pss.2003.05.011. DOI
Ali A., Sittler E.C., Jr., Chornay D., Rowe B.R., Puzzarini C. Organic chemistry in Titan’s upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space. Planet. Space Sci. 2015;109:46–63. doi: 10.1016/j.pss.2015.01.015. DOI
Fischer G., Gurnett D.A. The search for Titan lightning radio emissions. Geophys. Res. Lett. 2011;38:L08206. doi: 10.1029/2011GL047316. DOI
Lorenz R.D. Lightning detection on Venus: A critical review. Prog. Earth Planet. Sci. 2018;5:34. doi: 10.1186/s40645-018-0181-x. DOI
Arnone E., Bór J., Chanrion O., Barta V., Dietrich S., Enell C.-F., Farges T., Füllekrug M., Kero A., Labanti R., et al. Climatology of transient luminous events and lightning observed above Europe and the Mediterranean Sea. Surv. Geophys. 2020;41:167–199. doi: 10.1007/s10712-019-09573-5. DOI
Giles R.S., Greathouse T.K., Bonfond B., Gladstone G.R., Kammer J.A., Hue V., Grodent D.C., Gérard J.-C., Versteeg M.H., Wong M.H., et al. Possible Transient Luminous Events observed in Jupiter’s upper atmosphere. J. Geophys. Res. Planets. 2020;125:e2020JE006659. doi: 10.1029/2020JE006659. DOI
Dubrovin D., Nijdam S., Van Veldhuizen E.M., Ebert U., Yair Y., Price C. Sprite discharges on Venus and Jupiter-like planets: A laboratory investigation. J. Geophys. Res. Space Phys. 2010;115:A00E34. doi: 10.1029/2009JA014851. DOI
Riousset J.A., Nag A., Palotai C. Scaling of conventional breakdown threshold: Impact for predictions of lightning and TLEs on Earth, Venus, Mars. Icarus. 2020;338:113506. doi: 10.1016/j.icarus.2019.113506. DOI
Melnik O., Parrot M. Electrostatic discharge in Martian dust storms. J. Geophys. Res. Space Phys. 1998;103:29107–29117. doi: 10.1029/98JA01954. DOI
Hodosan G., Rimmer P., Helling C. Lightning as a possible source of the radio emission on HAT-P-11b. Mon. Not. R. Astron. Soc. 2016;461:stw977. doi: 10.1093/mnras/stw977. DOI
Baines K.H., Delitsky M.L., Momary T.W., Brown R.H., Buratti B.J., Clark R.N., Nicholson P.D. Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra. Planet. Space Sci. 2009;57:1650–1658. doi: 10.1016/j.pss.2009.06.025. DOI
Segura A., Navarro-González R. Experimental simulation of early martian volcanic lightning. Adv. Space Res. 2001;27:201–206. doi: 10.1016/S0273-1177(01)00048-5. PubMed DOI
Borucki W.J., McKay C.P., Jebens D., Lakkaraju H.S., Vanajakshi C.T. Spectral Irradiance Measurements of Simulated Lightning in Planetary Atmospheres. Icarus. 1996;123:336–344. doi: 10.1006/icar.1996.0162. DOI
Navarro-Gonzalez R., Villagran-Muniz M., Sobral H., Molina L.T., Molina M.J., Navarro-González R., Villagrán-Muniz M., Sobral H., Molina L.T., Molina M.J. The physical mechanism of nitric oxide formation in simulated lightning. Geophys. Res. Lett. 2001;28:3867–3870. doi: 10.1029/2001GL013170. DOI
Schumann U., Huntrieser H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 2007;7:3823–3907. doi: 10.5194/acp-7-3823-2007. DOI
Sobral H., Villagran-Muniz M., Navarro-Gonzalez R., Camps E. Experimental simulation of a double return-stroke lightning flash by lasers. Geophys. Res. Lett. 2002;29:1. doi: 10.1029/2002GL015715. DOI
Smyshlyaev S.P., Mareev E.A., Galin V.Y. Simulation of the impact of thunderstorm activity on atmospheric gas composition. Izv. Atmos. Ocean. Phys. 2010;46:451–467. doi: 10.1134/S0001433810040043. DOI
Delitsky M.L., Baines K.H. Storms on Venus: Lightning-induced chemistry and predicted products. Planet. Space Sci. 2015;113–114:184–192. doi: 10.1016/j.pss.2014.12.005. DOI
Navarro-Gonzalez R., McKay C.P., Mvondo D.N. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature. 2001;412:61–64. doi: 10.1038/35083537. PubMed DOI
Segura A., Navarro-Gonzalez R. Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophys. Res. Lett. 2005;32:L05203. doi: 10.1029/2004GL021910. DOI
Navarro-González R., Navarro K.F., Coll P., McKay C.P., Stern J.C., Sutter B., Archer Jr P.D., Buch A., Cabane M., Conrad P.G., et al. Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater during the Hesperian: Insights from the Mars Science Laboratory. J. Geophys. Res. Planets. 2019;124:94–113. doi: 10.1029/2018JE005852. DOI
BoruckiI W.J., Giver L.P., McKay C.P., Scattergood T., Parris J.E. Lightning production of hydrocarbons and hcn on titan—Laboratory measurements. Icarus. 1988;76:125–134. doi: 10.1016/0019-1035(88)90145-5. PubMed DOI
NavarroGonzalez R., Ramirez S.I. Lifes Sciences: Complex Organics in Space. Pergamon Press Ltd.; Oxford, UK: 1997. Corona discharge of Titan’s troposphere. PubMed
Plankensteiner K., Reiner H., Rode B.M., Mikoviny T., Wisthaler A., Hansel A., Maerk T.D., Fischer G., Lammer H., Rucker H.O. Discharge experiments simulating chemical evolution on the surface of Titan. Icarus. 2007;187:616–619. doi: 10.1016/j.icarus.2006.12.018. DOI
Hoerst S.M., Yelle RV V., Buch A., Carrasco N., Cernogora G., Dutuit O., Quirico E., Sciamma-O’Brien E., Smith M.A., Somogyi A., et al. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology. 2012;12:809–817. doi: 10.1089/ast.2011.0623. PubMed DOI PMC
Yang X., Gaillard F., Scaillet B. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet Sci. Lett. 2014;393:210–219. doi: 10.1016/j.epsl.2014.02.056. DOI
Mojzsis S.J., Arrhenius G., McKeegan K.D., Harrison T.M., Nutman A.P., Friend C.R. Evidence for life on Earth before 3800 million years ago. Nature. 1996;384:55–59. doi: 10.1038/384055a0. PubMed DOI
Bell E.A., Boehnke P., Harrison T.M., Mao W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA. 2015;112:14518–14521. doi: 10.1073/pnas.1517557112. PubMed DOI PMC
Saitta A.M., Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC
Hodosán G., Helling C., Asensio-Torres R., Vorgul I., Rimmer P.B. Lightning climatology of exoplanets and brown dwarfs guided by Solar system data. Mon. Not. R. Astron. Soc. 2016;461:3927–3947. doi: 10.1093/mnras/stw1571. DOI
Ardaseva A., Rimmer P.B., Waldmann I., Rocchetto M., Yurchenko S.N., Helling C., Tennyson J. Lightning chemistry on Earth-like exoplanets. Mon. Not. R. Astron. Soc. 2017;470:187–196. doi: 10.1093/mnras/stx1012. DOI
Ferus M. Unpublished Diploma Thesis. 2013. Time-Resolved FT Spectroscopy.
Carlone C., Dalby F.W. Spectrum of the hydroxyl radical. Can. J. Phys. 1969;47:1945–1957. doi: 10.1139/p69-245. DOI
Watson W.W. The Emission Spectrum of Water-Vapor. Astrophys. J. 1924;60:145. doi: 10.1086/142844. DOI
Meinel I.A.B. OH Emission Bands in the Spectrum of the Night Sky. Astrophys. J. 1950;111:555. doi: 10.1086/145296. DOI
Frey H.U., Mende S.B., Arens J.F., McCullough P.R., Swenson G.R. Atmospheric gravity wave signatures in the infrared hydroxyl OH airglow. Geophys. Res. Lett. 2000;27:41–44. doi: 10.1029/1999GL010695. DOI
Abrams M.C., Davis S.P., Rao M.L.P., Rolf J.E., Brault J.W. High-resolution Fourier transform spectroscopy of the Meinel system of OH. Astrophys. J. Suppl. Ser. 1994;93:351. doi: 10.1086/192058. DOI
Chen Q., Hu X., Guo H., Xie D. Insights into the Formation of Hydroxyl Radicals with Nonthermal Vibrational Excitation in the Meinel Airglow. J. Phys. Chem. Lett. 2021;12:1822–1828. doi: 10.1021/acs.jpclett.1c00159. PubMed DOI
Engleman R. Accurate wavenumbers of the A2Σ → X2Π (0, 0) and (1, 0) bands of OH and OD. J. Quant. Spectrosc. Radiat. Transf. 1972;12:1347–1350. doi: 10.1016/0022-4073(72)90191-4. DOI
Crosley D.R., Lengel R.K. Relative transition probabilities and the electronic transition moment in the A-X system of OH. J. Quant. Spectrosc. Radiat. Transf. 1975;15:579–591. doi: 10.1016/0022-4073(75)90026-6. DOI
Maillard J.P., Chauville J., Mantz A.W. High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 μm. J. Mol. Spectrosc. 1976;63:120–141. doi: 10.1016/0022-2852(67)90139-7. DOI
Sappey A.D., Copeland R.A. Laser Double-Resonance Study of OH (X2Π, v = 12) J. Mol. Spectrosc. 1990;143:160–168. doi: 10.1016/0022-2852(90)90267-T. DOI
Copeland R.A., Jeffries J.B., Crosley D.R. The OH A2Σ + −X2Πi (4,2) band: Line positions and linewidths. J. Mol. Spectrosc. 1990;143:183–185. doi: 10.1016/0022-2852(90)90270-Z. DOI
Stark G., Brault J.W., Abrams M.C. Fourier-transform spectra of the A2Σ+ − X2Π Δv = 0 bands of OH and OD. J. Opt. Soc. Am. B. 1994;11:3. doi: 10.1364/JOSAB.11.000003. DOI
German K.R. Direct measurement of the radiative lifetimes of the A2∑+ (V′ = 0) states of OH and OD. J. Chem. Phys. 1975;62:2584–2587. doi: 10.1063/1.430840. DOI
Bauschlicher C.W., Langhoff S.R. Theoretical determination of the radiative lifetime of the A2Σ+ state of OH. J. Chem. Phys. 1987;87:4665–4672. doi: 10.1063/1.452829. DOI
Coxon J.A. Optimum molecular constants and term values for the X2Π(ν ≤ 5) and A2Σ+ (ν ≤ 3) states of OH. Can. J. Phys. 1980;58:933–949. doi: 10.1139/p80-129. DOI
Coxon J.A., Foster S.C. Rotational analysis of hydroxyl vibration–rotation emission bands: Molecular constants for OH X2Π, 6 ≤ ν ≤ 10. Can. J. Phys. 1982;60:41–48. doi: 10.1139/p82-006. DOI
Coxon J.A., Sappey A.D., Copeland R.A. Molecular constants and term values for the hydroxyl radical, OH: The X2Π (v = 8, 12), A2Σ+ (v = 4–9), B2Σ+ (v = 0, 1), and C2Σ+ (v = 0, 1) states. J. Mol. Spectrosc. 1991;145:41–55. doi: 10.1016/0022-2852(91)90349-F. DOI
Bernath P.F., Colin R. Revised molecular constants and term values for the X2Π and B2Σ+ states of OH. J. Mol. Spectrosc. 2009;257:20–23. doi: 10.1016/j.jms.2009.06.003. DOI
Goldman A., Schoenfeld W.G., Goorvitch D., Chackerian C., Dothe H., Mélen F., Abrams M.C., Selby J.E. Updated line parameters for OH X2II-X2II (v″, v′) transitions. J. Quant. Spectrosc. Radiat. Transf. 1998;59:453–469. doi: 10.1016/S0022-4073(97)00112-X. DOI
Billoux T., Cressault Y., Gleizes A. Tables of radiative transition probabilities for the main diatomic molecular systems of OH, CH, CH+, CO and CO+ occurring in CO-H2 syngas-type plasma. J. Quant. Spectrosc. Radiat. Transf. 2014;133:434–444. doi: 10.1016/j.jqsrt.2013.09.005. DOI
Brooke JS A., Bernath P.F., Western C.M., Sneden C., Afşar M., Li G., Gordon I.E. Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH. J. Quant. Spectrosc. Radiat. Transf. 2016;168:142–157. doi: 10.1016/j.jqsrt.2015.07.021. DOI
Yousefi M., Bernath P.F., Hodges J., Masseron T. A new line list for the A2Σ+ − X2Π electronic transition of OH. J. Quant. Spectrosc. Radiat. Transf. 2018;217:416–424. doi: 10.1016/j.jqsrt.2018.06.016. DOI
Goldman A., Murcray D.G., Lambert D.L., Dominy J.F. The pure rotation spectrum of the hydroxyl radical and the solar oxygen abundance. Mon. Not. R. Astron. Soc. 1983;203:767–776. doi: 10.1093/mnras/203.3.767. DOI
Grevesse N., Sauval A.J., van Dishoeck E.F. An analysis of vibration-rotation lines of OH in the solar infrared spectrum. Astron. Astrophys. 1984;141:10–16.
Mélen F., Sauval A.J., Grevesse N., Farmer C.B., Servais C., Delbouille L., Roland G. A new analysis of the OH radical spectrum from solar infrared observations. J. Mol. Spectrosc. 1995;174:490–509. doi: 10.1006/jmsp.1995.0018. DOI
Asplund M., Grevesse N., Sauval A.J., Allende Prieto C., Kiselman D. Line formation in solar granulation. Astron. Astrophys. 2004;417:751–768. doi: 10.1051/0004-6361:20034328. DOI
Lelieveld J., Gromov S., Pozzer A., Taraborrelli D. Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys. 2016;16:12477–12493. doi: 10.5194/acp-16-12477-2016. DOI
Gamache R.R., Vispoel B., Rey M., Tyuterev V., Barbe A., Nikitin A., Polyansky O.L., Tennyson J., Yurchenko S.N., Csaszar A.G., et al. Partition sums for non-local thermodynamic equilibrium conditions for nine molecules of importance in planetary atmospheres. Icarus. 2022;378:114947. doi: 10.1016/j.icarus.2022.114947. DOI
Martin-Drumel M.A., Pirali O., Balcon D., Brechignac P., Roy P., Vervloet M. High resolution far-infrared Fourier transform spectroscopy of radicals at the AILES beamline of SOLEIL synchrotron facility. Rev. Sci. Instrum. 2011;82:113106. doi: 10.1063/1.3660809. PubMed DOI
Noll S., Winkler H., Goussev O., Proxauf B. OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines. Atmos. Chem. Phys. 2020;20:5269–5292. doi: 10.5194/acp-20-5269-2020. DOI
Melendez J., Barbuy B. Keck NIRSPEC Infrared OH Lines: Oxygen Abundances in Metal-poor Stars down to [Fe/H] = −2.9. Astrophys. J. 2002;575:474–483. doi: 10.1086/341142. DOI
Piccioni G., Drossart P., Zasova L., Migliorini A., Gérard J.C., Mills F.P., Shakun A., García Muñoz A., Ignatiev N., Grassi D., et al. First detection of hydroxyl in the atmosphere of Venus. Astron. Astrophys. 2008;483:29–33. doi: 10.1051/0004-6361:200809761. DOI
Nugroho S.K., Kawahara H., Gibson N.P., de Mooij E.J.W., Hirano T., Kotani T., Kawashima Y., Masuda K., Brogi M., Birkby J.L., et al. First Detection of Hydroxyl Radical Emission from an Exoplanet Atmosphere: High-dispersion Characterization of WASP-33b Using Subaru/IRD. Astrophys. J. Lett. 2021;910:L9. doi: 10.3847/2041-8213/abec71. DOI
Hase F., Wallace L., McLeod S.D., Harrison J.J., Bernath P.F. The ACE-FTS atlas of the infrared solar spectrum. J. Quant. Spectrosc. Radiat. Transf. 2010;111:521–528. doi: 10.1016/j.jqsrt.2009.10.020. DOI
Fernando A.M., Bernath P.F., Hodges J.N., Masseron T. A new linelist for the A3Π–X3Σ− transition of the NH free radical. J. Quant. Spectrosc. Radiat. Transf. 2018;217:29–34. doi: 10.1016/j.jqsrt.2018.05.021. DOI
Eder J.M. Beiträge zur Spectralanalyse. Denksch. Wien. Akad. 1893;60:1–12.
Fowler A., Gregory C.C. The Ultra-Violet Band of Ammonia, and Its Occurrence in the Solar Spectrum. Philos. Trans. R. Soc. 1919;218:351–372.
Funke G.W. Das Absorptionsspektrum des NH. Z. Phys. 1936;101:104–112. doi: 10.1007/BF01336848. DOI
Dixon R.N. THE 0–0 AND 1–0 BANDS OF THE A (3 Π i) – X (3 Σ −) SYSTEM OF NH. Can. J. Phys. 1959;37:1171–1186. doi: 10.1139/p59-134. DOI
Mantei K.A., Bair E.J. Reactions of nitrogen-hydrogen radicals. III. Formation and disappearance of NH radicals in the photolysis of ammonia. J. Chem. Phys. 1968;49:3248–3256. doi: 10.1063/1.1670577. DOI
Hansen I., Hoinghaus K., Zetzsch C., Stuhl F. Detection of NH (X p3Σ−) by resonance fluorescence in the pulsed vacuum uv photolysis of NH3 and its application to reactions of NH radicals. Chem. Phys. Lett. 1976;42:370–372. doi: 10.1016/0009-2614(76)80387-9. DOI
Brazier C.R., Ram R.S., Bernath P.F. Fourier transform spectroscopy of the A3Π-X3Σ- transition of NH. J. Mol. Spectrosc. 1986;120:381–402. doi: 10.1016/0022-2852(86)90012-3. DOI
Clement S.G., Ashfold MN R., Western C.M., Johnson R.D., Hudgens J.W. Triplet excited states of the NH(ND) radical revealed via two photon resonant multiphoton ionization spectroscopy. J. Chem. Phys. 1992;96:5538–5540. doi: 10.1063/1.462691. DOI
Ram R.S., Bernath P.F., Hinkle K.H. Infrared emission spectroscopy of NH: Comparison of a cryogenic echelle spectrograph with a Fourier transform spectrometer. J. Chem. Phys. 1999;110:5557–5563. doi: 10.1063/1.478453. DOI
Swings P., Elvey C.T., Babcock H.W. The Spectrum of Comet Cunningham, 1940C. Astrophys. J. 1941;94:320. doi: 10.1086/144336. DOI
Singh P.D., Gruenwald R.B. The photodissociation lifetimes of the NH radical in comets. Astron. Astrophys. 1987;178:277–282.
Sneden C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 1973;184:839. doi: 10.1086/152374. DOI
Lambert D.L., Brown J.A., Hinkle K.H., Johnson H.R. Carbon, nitrogen, and oxygen abundances in Betelgeuse. Astrophys. J. 1984;284:223. doi: 10.1086/162401. DOI
Smith V.V., Lambert D.L. The chemical composition of red giants. II—Helium burning and the s-process in the MS and S stars. Astrophys. J. 1986;311:843. doi: 10.1086/164823. DOI
Aoki W., Tsuji T. High resolution infrared spectroscopy of CN and NH lines: Nitrogen abundance in oxygen-rich giants through K to late M. Astron. Astrophys. 1997;328:175–186.
Meyer D.M., Roth K.C. Discovery of interstellar NH. Astrophys. J. 1991;376:L49. doi: 10.1086/186100. DOI
Crawford I.A., Williams D.A. Detection of interstellar NH towards ζ Ophiuchi by means of ultra-high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 1997;291:L53–L56. doi: 10.1093/mnras/291.3.L53. DOI
Weselak T., Galazutdinov G.A., Beletsky Y., Krełowski J. Interstellar NH molecule in translucent sightlines. Mon. Not. R. Astron. Soc. 2009;400:392–397. doi: 10.1111/j.1365-2966.2009.15466.x. DOI
Spite M., Cayrel R., Plez B., Hill V., Spite F., Depagne E., François P., Bonifacio P., Barbuy B., Beers T., et al. First stars VI—Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements. Astron. Astrophys. 2005;430:655–668. doi: 10.1051/0004-6361:20041274. DOI
Claxton T.A. Ab initio UHF calculations. Part 3.—NH radicals. Trans. Faraday Soc. 1970;66:1540–1543. doi: 10.1039/TF9706601540. DOI
Das G., Wahl A.C., Stevens W.J. Ab initio study of the NH radical. J. Chem. Phys. 1974;61:433–434. doi: 10.1063/1.1681663. DOI
Ram R.S., Bernath P.F. Revised molecular constants and term values for the X3Σ− and A3Π states of NH. J. Mol. Spectrosc. 2010;260:115–119. doi: 10.1016/j.jms.2010.01.006. DOI
Brooke J.S.A., Bernath P.F., Western C.M., van Hemert M.C., Groenenboom G.C. Line strengths of rovibrational and rotational transitions within the X3Σ− ground state of NH. [(accessed on 8 March 2023)];J. Chem. Phys. 2014 141:054310. doi: 10.1063/1.4891468. Available online: http://bernath.uwaterloo.ca/publicationfiles/2014/Brooke-groundstateNH.pdf. PubMed DOI
Brooke J.S.A., Bernath P.F., Western C.M. Note: Improved line strengths of rovibrational and rotational transitions within the X3Σ− ground state of NH. [(accessed on 8 March 2023)];J. Chem. Phys. 2015 143:026101. doi: 10.1063/1.4923422. Available online: https://research-information.bris.ac.uk/ws/portalfiles/portal/42663333/final.pdf. PubMed DOI
van de Meerakker S.Y.T., Jongma R.T., Bethlem H.L., Meijer G. Accumulating NH radicals in a magnetic trap. Phys. Rev. A. 2001;64:4. doi: 10.1103/PhysRevA.64.041401. DOI
Van De Meerakker S.Y.T., Labazan I., Hoekstra S., Küpper J., Meijer G. Production and deceleration of a pulsed beam of metastable NH (a 1Δ) radicals. J. Phys. B At. Mol. Opt. Phys. 2006;39:S1077. doi: 10.1088/0953-4075/39/19/S18. DOI
Plomp V., Gao Z., Cremers T., van de Meerakker S.Y. Multistage Zeeman deceleration of NH X3Σ− radicals. Phys. Rev. A. 2019;99:1–6. doi: 10.1103/PhysRevA.99.033417. DOI
Pastorek A., Clark V.H.J., Yurchenko S.N., Civis S. Time-resolved fourier transform infrared emission spectroscopy of NH radical in the X-3 Sigma(−) ground state. J. Quant. Spectrosc. Radiat. Transf. 2022;291:108332. doi: 10.1016/j.jqsrt.2022.108332. DOI
Farmer C.B., Norton R.H. A high-resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space. A compilation of ATMOS spectra of the region from 650 to 4800 cm−1 (2.3 to 16 microns) NASA Ref. Publ. 1989;1224:2.
Geller M., Sauval A.J., Grevesse N., Farmer C.B., Norton R.H. First identification of pure rotation lines of NH in the infrared solar spectrum. Astron. Astrophys. 1991;249:550–552.
Bernath P.F. MoLLIST: Molecular Line Lists, Intensities and Spectra. J. Quant. Spectrosc. Radiat. Transf. 2020;240:106687. doi: 10.1016/j.jqsrt.2019.106687. DOI
Wang Y., Tennyson J., Yurchenko S.N. Empirical line lists in the ExoMol database. Atoms. 2020;8:7. doi: 10.3390/atoms8010007. DOI
Jeilani Y.A., Nguyen H.T., Cardelino B.H., Nguyen M.T. Free radical pathways for the prebiotic formation of xanthine and isoguanine from formamide. Chem. Phys. Lett. 2014;598:58–64. doi: 10.1016/j.cplett.2014.02.053. DOI
Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. National Research Council of Canada, Litton Educational Publishing; New York, NY, USA: 1979.
Horka V., Civis S., Spirko V., Kawaguchi K. The infrared spectrum of CN in its ground electronic state. Collect. Czechoslov. Chem. Commun. 2004;69:73–89. doi: 10.1135/cccc20040073. DOI
Civis S., Sedivcova-Uhlikova T., Kubelik P., Kawaguchi K. Time-resolved Fourier transform emission spectroscopy of A(2)Pi-X-2 Sigma(+) infrared transition of the CN radical. J. Mol. Spectrosc. 2008;250:20–26. doi: 10.1016/j.jms.2008.04.002. DOI
Ferus M., Knizek A., Sponer J., Sponer J., Civis S. Radical Synthesis of Nucleic Bases from Formamide in Impact Plasma. Chem. Listy. 2015;109:406–414.
Ferus M., Knizek A., Civiš S. Meteorite-catalyzed synthesis of nucleosides and other prebiotic compounds. Proc. Natl. Acad. Sci. USA. 2015;112:7109–7110. doi: 10.1073/pnas.1507471112. PubMed DOI PMC
Rios A.C. Impact synthesis of the RNA bases. Proc. Natl. Acad. Sci. USA. 2015;112:643–644. doi: 10.1073/pnas.1424273112. PubMed DOI PMC
Costes M., Naulin C., Dorthe G. The Dissociation Energy Release of the CN Radical Determined from the CN Internal Energy Release of the C + NO- = CN + O Reaction. Astron. Astrophys. 1990;232:270–276.
Schaefer H.F. Electronic Structures and Potential Energy Curves for the Low-Lying States of the CN Radical. J. Chem. Phys. 1971;54:2573. doi: 10.1063/1.1675214. DOI
Jenkins F.A. Extension of the violet CN band system to include the CN tail bands. Phys. Rev. 1928;31:539–558. doi: 10.1103/PhysRev.31.539. DOI
Thiele T.N. On the Law of Spectral Series. Astrophys. J. 1897;6:65. doi: 10.1086/140375. DOI
Treffers R.R. Observations of the fundamental rotation-vibration band of CN. Astrophys. J. 1975;196:883. doi: 10.1086/153480. DOI
Cerny D., Bacis R., Guelachvili G., Roux F. Extensive analysis of the red system of the CN molecule with a high-resolution Fourier Spectrometer. J. Mol. Spectrosc. 1978;73:154–167. doi: 10.1016/0022-2852(78)90201-1. DOI
Davies P.B., Hamilton P.A. The infrared laser spectrum of the CN radical in its ground state. J. Chem. Phys. 1982;76:2127–2128. doi: 10.1063/1.443307. DOI
Skatrud D.D., De Lucia F.C., Blake G.A., Sastry K.V. The millimeter and submillimeter spectrum of CN in its first four vibrational states. J. Mol. Spectrosc. 1983;99:35–46. doi: 10.1016/0022-2852(83)90290-4. DOI
Bogey M., Demuynck C., Destombes J.L. The millimeter wave spectrum of 13CN in the excited vibrational states v ≤ 9. Chem. Phys. 1986;102:141–146. doi: 10.1016/0301-0104(86)85125-4. DOI
Ito H., Kuchitsu K., Yamamoto S., Saito S. Microwave spectroscopy of the ν = 3–10 levels of CN (X2Σ+) Chem. Phys. Lett. 1991;186:539–546. doi: 10.1016/0009-2614(91)90464-K. DOI
Prasad C.V., Bernath P.F., Frum C., Engleman R. Fourier transform jet emission spectroscopy of the B2Σ+-X2Σ+ transition of CN. J. Mol. Spectrosc. 1992;151:459–473. doi: 10.1016/0022-2852(92)90579-D. DOI
Rehfuss B.D., Suh M.H., Miller T.A., Bondybey V.E. Fourier transform UV, visible, and infrared spectra of supersonically cooled CN radical. J. Mol. Spectrosc. 1992;151:437–458. doi: 10.1016/0022-2852(92)90578-C. DOI
Wurfel B.E., Schallmoser G., Lask G.M., Agreiter J., Thoma A., Schlachta R., Bondybey V.E. Infrared fluorescence and absorption studies of CN: Spectra and relaxation in solid rare gases. Chem. Phys. 1993;174:255–265. doi: 10.1016/0301-0104(93)87010-K. DOI
Liu Y., Duan C., Liu H., Gao H., Guo Y., Liu X., Lin J. Near-infrared spectrum of the A2Πi-X2Σ+ (2, 0) band of CN studied by concentration modulation laser spectroscopy. J. Mol. Spectrosc. 2001;205:16–19. doi: 10.1006/jmsp.2000.8250. PubMed DOI
Chao-Xiong X., Ling W., Jin-Jun L., Sheng-Hai W., Chuan-Xi D., Yang-Qin C., Yu-Yan L. Band (5, 0) in the Red System A 2 I—X2+ of CN Studied by Optical Heterodyne Magnetic Rotation Enhanced Concentration Modulation Spectroscopy. Chin. Phys. Lett. 2002;19:1277–1279. doi: 10.1088/0256-307X/19/9/318. DOI
Hempel F., Röpcke J., Pipa A., Davies P.B. Infrared laser spectroscopy of the CN free radical in a methane-nitrogen-hydrogen plasma. Mol. Phys. 2003;101:589–594. doi: 10.1080/0026897021000014929. DOI
Li P., Fan W.Y. The CN free radical in acetonitrile discharges. J. Appl. Phys. 2003;93:9497–9502. doi: 10.1063/1.1575928. DOI
Hübner M., Castillo M., Davies P.B., Ropeke J. Diode laser spectroscopy of the fundamental bands of12C 14N, 13C14N, 12C15N, 13C15N free radicals in the ground 2∑+ electronic state. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005;61:57–60. doi: 10.1016/j.saa.2004.03.012. PubMed DOI
Ito H., Ozaki Y., Suzuki K., Kondow T., Kuchitsu K. Emission spectrum of the CN(B2Σ+ − X2Σ+) tail band system: B2Σ+∼4Π perturbations in the vB = 9, 12, and 17 levels. J. Chem. Phys. 1992;96:4195–4204. doi: 10.1063/1.462838. DOI
Ito H., Kazama A., Kuchitsu K. Perturbations in the CN(B2Σ+ – X2Σ+) tail band system Part 4. The B2Σ+∼A2Πi perturbations in the υB = 11, 14–16, 18 and 19 levels. J. Mol. Struct. 1994;324:29–43. doi: 10.1016/0022-2860(94)08223-5. DOI
Ram R.S., Wallace L., Hinkle K., Bernath P.F. Fourier transform emission spectroscopy of the A2Π-X2Σ+ (RED) system of 13C14N. Astrophys. J. Suppl. Ser. 2010;188:500–505. doi: 10.1088/0067-0049/188/2/500. DOI
Ram R.S., Wallace L., Bernath P.F. High resolution emission spectroscopy of the A2-X2Σ+ (red) system of 12C14N. J. Mol. Spectrosc. 2010;263:82–88. doi: 10.1016/j.jms.2010.07.002. DOI
Ram R.S., Bernath P.F. Fourier transform emission spectroscopy of the A2Π-X2Σ+ (red) system of 13C 14N (II) J. Mol. Spectrosc. 2012;274:22–27. doi: 10.1016/j.jms.2012.03.008. DOI
Brooke J.S.A., Ram R.S., Western C.M., Li G., Schwenke D.W., Bernath P.F. Einstein A coefficients and oscillator strengths for the A2Π – X2Σ+ (red) and B2Σ+ – X2Σ+ (violet) systems and rovibrational transitions in the X2Σ+ state of CN. Astrophys. J. Suppl. Ser. 2014;210:23. doi: 10.1088/0067-0049/210/2/23. DOI
Pradhan A.D., Partridge H., Bauschlicher C.W. The dissociation energy of CN and C2. J. Chem. Phys. 1994;101:3857–3861. doi: 10.1063/1.467503. DOI
Li P., Tan Y.L., Fan W.Y. The CN and CS transient species in CH3SCN discharges. Chem. Phys. 2004;302:171–177. doi: 10.1016/j.chemphys.2004.04.005. DOI
Hodyss R., Howard H.R., Johnson P.V., Goguen J.D., Kanik I. Formation of radical species in photolyzed CH4:N2 ices. Icarus. 2011;214:748–753. doi: 10.1016/j.icarus.2011.05.023. DOI
Lambert D.L., Dearborn D.S., Sneden C. The C-12/C-13 ratio in stellar atmospheres. II–CN and CO in alpha Orionis. Astrophys. J. 1974;193:621. doi: 10.1086/153199. DOI
Saleck A.H., Simon R., Schneider N., Winnewisser G. Detection of interstellar (C-12)(N-15) Astrophys. J. 1993;414:L133. doi: 10.1086/187014. DOI
Saleck A.H., Simon R., Winnewisser G. Interstellar CN rotational spectra: (12)C(15)N. Astrophys. J. 1994;436:176. doi: 10.1086/174890. DOI
Sneden C., Lucatello S., Ram R.S., Brooke J.S.A., Bernath P. Line lists for the A2Π − X2Σ+ (red) and B2σ+ − X2Σ+ (violet) systems of CN, 13C14N, and 12C15N, and application to astronomical spectra. Astrophys. J. Suppl. Ser. 2014;214:26. doi: 10.1088/0067-0049/214/2/26. DOI
Thaddeus P. The Short-Wavelength Spectrum of the Microwave Background. Annu. Rev. Astron. Astrophys. 1972;10:305–334. doi: 10.1146/annurev.aa.10.090172.001513. DOI
Herzberg G., Johns J.W.C. New spectra of the CH molecule. Astrophys. J. 1969;158:399. doi: 10.1086/150202. DOI
Heurlinger T., Hulthen E. On the structure of the band spectrum of burning hydrocarbons. Z. Wiss. Phot. 1919;18:241–248.
Filseth S.V., Zacharias H., Danon J., Wallenstein R., Welge K.H. Laser excited fluorescence of CH in a low pressure flame. Chem. Phys. Lett. 1978;58:140–144. doi: 10.1016/0009-2614(78)80334-0. DOI
Hougen J.T., Mucha J.A., Jennings D.A., Evenson K.M. Far infrared laser magnetic resonance spectrum of CH. J. Mol. Spectrosc. 1978;72:463–483. doi: 10.1016/0022-2852(78)90144-3. DOI
Suzuki K., Kuchitdsu K. Emission spectra of CH(A2Δ) from methane in an argon flowing afterglow. Chem. Phys. Lett. 1978;56:50–53. doi: 10.1016/0009-2614(78)80184-5. DOI
Chen P., Pallix J.B., Chupka W.A., Colson S.D. Resonant multiphoton ionization spectrum and electronic structure of CH radical. New states and assignments above 50,000 cm−1. J. Chem. Phys. 1986;86:516–520. doi: 10.1063/1.452303. DOI
Bernath P.F., Brazier C.R., Olsen T., Hailey R., Fernando WT M.L., Woods C., Hardwick J.L. Spectroscopy of the CH free radical. J. Mol. Spectrosc. 1991;147:16–26. doi: 10.1016/0022-2852(91)90164-6. DOI
Hung W.C., Huang M.L., Lee Y.C., Lee Y.P. Detection of CH in an oxyacetylene flame using two-color resonant four-wave mixing technique. J. Chem. Phys. 1995;103:9941–9946. doi: 10.1063/1.469883. DOI
Bembenek Z., Kȩpa R., Rytel M. Analysis of the 0-0 Band of the C2Σ+ − X2Π Band System in the 12CH and 13CH Isotopic Radicals. J. Mol. Spectrosc. 1997;183:1–5. doi: 10.1006/jmsp.1996.7246. DOI
Zachwieja M. The A2Δ–X2Π Band System of the13CH Radical. J. Mol. Spectrosc. 1997;182:18–33. doi: 10.1006/jmsp.1996.7203. DOI
Chen Y., Jin J., Pei L., Ma X., Chen C. Resonance multiphoton ionization spectroscopy of the D2Π(v = 2) ← A2Δ of CH radicals. J. Electron Spectrosc. Relat. Phenom. 2000;108:221–224. doi: 10.1016/S0368-2048(00)00132-8. DOI
Amano T. The Lowest Submillimeter-Wave Transitions of CH: The Laboratory Measurement of the Rest Frequencies. Astrophys. J. 2000;531:L161–L164. doi: 10.1086/312544. PubMed DOI
Davidson S.A., Evenson K.M., Brown J.M. A Measurement of the Rotational Spectrum of the CH Radical in the Far-Infrared. Astrophys. J. 2001;546:330–337. doi: 10.1086/318255. DOI
Czyzewski A., Ernst K., Franssen G., Karasinski G., Kmieciak M., Lange H., Skubiszak W., Stacewicz T. Investigation of kinetics of CH-radical decay by cavity ring-down spectroscopy. Chem. Phys. Lett. 2002;357:477–482. doi: 10.1016/S0009-2614(02)00584-5. DOI
Davidson S.A., Evenson K.M., Brown J.M. The far-infrared laser magnetic resonance spectrum of the 13CH radical. J. Mol. Spectrosc. 2004;223:20–30. doi: 10.1016/j.jms.2003.09.002. DOI
Jackson M., Zink L.R., McCarthy M.C., Perez L., Brown J.M. The far-infrared and microwave spectra of the CH radical in the v = 1 level of the X2Π state. J. Mol. Spectrosc. 2008;247:128–139. doi: 10.1016/j.jms.2007.11.001. DOI
Truppe S., Hendricks R.J., Hinds E.A., Tarbutt M.R. Measurement of the lowest millimeter-wave transition frequency of the CH radical. Astrophys. J. 2014;780:10–13.
Gans B., Holzmeier F., Krüger J., Falvo C., Röder A., Lopes A., Garcia G.A., Fittschen C., Loison J.C., Alcaraz C. Synchrotron-based valence shell photoionization of CH radical. J. Chem. Phys. 2016;144:204307. doi: 10.1063/1.4950880. PubMed DOI
Carre M. Analysis of two band systems of CH+: 1△ → 1п and 3Σ → 3п. Physica. 1969;41:63–66. doi: 10.1016/0031-8914(69)90240-7. DOI
Carrington A., Ramsay D.A. Some New Emission Bands of the A1Π – X1Σ+ System of CH+ Phys. Scr. 1982;25:272–274. doi: 10.1088/0031-8949/25/2/005. DOI
Carozza J., Anderson R. Radiative lifetime of the A2Δ state of CH. J. Opt. Soc. Am. 1977;67:118. doi: 10.1364/JOSA.67.000118. DOI
Jorgensen U.G., Larsson M., Iwamae A., Yu B. Line intensities for CH and their application to stellar atmospheres. Astron. Astrophys. 1996;315:204–211.
Martin J.M.L. Spectroscopic quality ab initio potential curves for CH, NH, OH and HF. A convergence study. Chem. Phys. Lett. 1998;292:411–420. doi: 10.1016/S0009-2614(98)00683-6. DOI
Kalemos A., Mavridis A., Metropoulos A. An accurate description of the ground and excited states of CH. J. Chem. Phys. 1999;111:9536–9548. doi: 10.1063/1.480285. DOI
Ghosh P.N., Deo M.N., Kawaguchi K. Vibrational Transition Moment of the CH Radical Determined from the Herman-Wallis Effect. Astrophys. J. 1999;525:539–542. doi: 10.1086/307904. DOI
Metropoulos A., Mavridis A. Predissociation lifetimes of the e 2Π and F2Π states of CH. Chem. Phys. Lett. 2000;331:89–94. doi: 10.1016/S0009-2614(00)01156-8. DOI
Heryadi D., Mahalakshmi S., Yeager D.L. The direct determination of the ionization potentials of CH and CH3 using the electron propagator method with a multiconfigurational second-order perturbation theory wavefunction as the initial state (EPCASPT2) Chem. Phys. Lett. 2002;351:92–98. doi: 10.1016/S0009-2614(01)01355-0. DOI
Reddy R.R., Nazeer Ahammed Y., Rama Gopal K., Baba Basha D. Spectroscopic investigations on cometary molecules CO+, CH and CH+ J. Quant. Spectrosc. Radiat. Transf. 2004;85:105–113. doi: 10.1016/S0022-4073(03)00195-X. DOI
Vázquez G.J., Amero J.M., Liebermann H.P., Buenker R.J., Lefebvre-Brion H. Insight into the Rydberg states of CH. J. Chem. Phys. 2007;126:164302. doi: 10.1063/1.2721535. PubMed DOI
Lavín C., Velasco A.M., Martín I. Oscillator strength distribution in the discrete and continuum regions of the spectrum of CH molecule (oscillator strength distribution of CH) Astrophys. J. 2009;692:1354–1359. doi: 10.1088/0004-637X/692/2/1354. DOI
Masseron T., Plez B., Van Eck S., Colin R., Daoutidis I., Godefroid M., Coheur P.F., Bernath P., Jorissen A., Christlieb N. CH in stellar atmospheres: An extensive linelist. Astron. Astrophys. 2014;571:A47. doi: 10.1051/0004-6361/201423956. DOI
Swings P., Rosenfeld L. Considerations Regarding Interstellar Molecules. Astrophys. J. 1937;86:483. doi: 10.1086/143880. DOI
Swings P., Nicolet M. On the Intensity Distribution in the Bands of Cometary Spectra. Astrophys. J. 1938;88:173. doi: 10.1086/143968. DOI
Wildt R. The Continuous Spectrum of Stellar Atmospheres Consisting Only of Atoms and Negative Ions of Hydrogen. Astrophys. J. 1941;93:47. doi: 10.1086/144242. DOI
Douglas A.E., Morton J.R. An Extension of the 1Π-1Σ System of CH+ an the Identification of the λ 3579 Interstellar Line. Astrophys. J. 1960;131:1. doi: 10.1086/146798. DOI
Watson J.K.G. Assignment of the λ1369.13 Diffuse Interstellar Absorption Band and Three Other Far-Ultraviolet Interstellar Absorption Lines to the CH Molecule. Astrophys. J. 2001;555:472–476. doi: 10.1086/321480. DOI
Mélen F., Grevesse N., Sauval A.J., Farmer C.B., Norton R.H., Bredohl H., Dubois I. A new analysis of the vibration-rotation spectrum of CH from solar spectra. J. Mol. Spectrosc. 1989;134:305–313. doi: 10.1016/0022-2852(89)90317-2. DOI
Zachwieja M. New Investigations of the A2Δ-X2Π band system in the ch radical and a new reduction of the vibration-rotation spectrum of CH from the ATMOS spectra. J. Mol. Spectrosc. 1995;170:285–309. doi: 10.1006/jmsp.1995.1072. DOI
Tennyson J., Yurchenko S.N., Al-Refaie A.F., Clark V.H.J., Chubb K.L., Conway E.K., Dewan A., Gorman M.N., Hill C., Lynas-Gray A.E., et al. The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 2020;255:107228. doi: 10.1016/j.jqsrt.2020.107228. DOI
Civis S., Ferus M., Kubelik P., Jelinek P., Chernov V.E. Potassium spectra in the 700–7000 cm(−1) domain: Transitions involving f-, g-, and h-states. Astron. Astrophys. 2012;541:A125.
Sulakshina O.N., Borkov Y.G. Global modelling of the experimental energy levels and observed line positions: Dunham coefficients for the ground state of (NO)-N-14-O-16. Mol. Phys. 2018;116:3519–3529. doi: 10.1080/00268976.2018.1468043. DOI