High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_UP_A024_1009
Medical Research Council - United Kingdom
PubMed
28740207
PubMed Central
PMC5524942
DOI
10.1038/s41598-017-06489-1
PII: 10.1038/s41598-017-06489-1
Knihovny.cz E-zdroje
- MeSH
- atmosféra * MeSH
- dusík chemie MeSH
- kyanovodík chemie MeSH
- oxid uhelnatý chemie MeSH
- prebiotika * MeSH
- uhlík chemie MeSH
- Země (planeta) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- kyanovodík MeSH
- oxid uhelnatý MeSH
- prebiotika * MeSH
- uhlík MeSH
Recent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the effect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations. Using continuously scanning time-resolved spectrometry, we have detected ·CN radical and excited CO as the initially most abundant products. Cyano radicals and excited carbon monoxide molecules in particular are reactive, energy-rich species, but are resilient owing to favourable Franck-Condon factors. The subsequent reactions of these first formed excited species lead to the production of ground-state prebiotic building blocks, principally HCN.
Zobrazit více v PubMed
McCollom, T. M. In Annual Review of Earth and Planetary Sciences (ed. Jeanloz, R.) 41, 207–229 (Annual Reviews, 2013).
Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 2008;38:105–115. doi: 10.1007/s11084-007-9120-3. PubMed DOI
Saitta AM, Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–73. doi: 10.1073/pnas.1402894111. PubMed DOI PMC
Saladino R, Botta G, Delfino M, Di Mauro E. Meteorites as Catalysts for Prebiotic Chemistry. Chem. Eur. J. 2013;19:16916–16922. doi: 10.1002/chem.201303690. PubMed DOI
Ferus M, et al. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. 2015;112:657–662. doi: 10.1073/pnas.1412072111. PubMed DOI PMC
Sutherland JD. The Origin of Life-Out of the Blue. Angew. Chemie - Int. Ed. 2016;55:104–121. doi: 10.1002/anie.201506585. PubMed DOI
Šponer JE, et al. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys. Chem. Chem. Phys. 2016;18:20047–20066. doi: 10.1039/C6CP00670A. PubMed DOI
Saladino, R. et al. First Evidence on the Role of Heavy Ion Irradiation of Meteorites and Formamide in the Origin of Biomolecules. Orig. Life Evol. Biosph. 1–7, doi:10.1007/s11084-016-9495-0 (2016). PubMed
Saladino R, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC
Ferus M, et al. On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction between Cyano Radicals and Formamide in a High-Energy Impact Event. J. Am. Chem. Soc. 2012;134:20788–20796. doi: 10.1021/ja310421z. PubMed DOI
Chyba C, Sagan C. Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules - an Inventory for the Origin of Life. Nature. 1992;355:125–132. doi: 10.1038/355125a0. PubMed DOI
Civis M, et al. Spectroscopic investigations of high-density-energy plasma transformations in a simulated early reducing atmosphere containing methane, nitrogen and water. Phys. Chem. Chem. Phys. 2016;18:27317–27325. doi: 10.1039/C6CP05025E. PubMed DOI
Ferus M, et al. HNC/HCN Ratio in Acetonitrile, Formamide, and BrCN Discharge. J. Phys. Chem. A. 2011;115:1885–1899. doi: 10.1021/jp1107872. PubMed DOI
Hill RD. An efficient lightning energy-source on the early Earth. Orig. life Evol. Biosph. 1992;22:277–285. doi: 10.1007/BF01810857. PubMed DOI
Geiss J, Rossi AP. On the chronology of lunar origin and evolution Implications for Earth, Mars and the Solar System as a whole. Astron. Astrophys. Rev. 2013;21:1–54. doi: 10.1007/s00159-013-0068-1. DOI
de Niem D, Kuehrt E, Morbidelli A, Motschmann U. Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus. 2012;221:495–507. doi: 10.1016/j.icarus.2012.07.032. DOI
Koeberl, C., Reimold, W. U., McDonald, I. & Rosing, M. Search for petrographic and geochemical evidence for the late heavy bombardment on Earth in early Archean rocks from Isua, Greenland. in Impacts and the Early Earth (eds C., G. I. and K.) 91, 73–97 (Springer-Verlag Berlin, 2000).
Koeberl C. Impact processes on the early Earth. Elements. 2006;2:211–216. doi: 10.2113/gselements.2.4.211. DOI
Hashimoto GL, Abe Y, Sugita S. The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 2007;112:E05010. doi: 10.1029/2006JE002844. DOI
Yang X, Gaillard F, Scaillet B. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet. Sci. Lett. 2014;393:210–219. doi: 10.1016/j.epsl.2014.02.056. DOI
Lunine JI. Physical conditions on the early Earth. Philos. Trans. R. Soc. B - Biol. Sci. 2006;361:1721–1731. doi: 10.1098/rstb.2006.1900. PubMed DOI PMC
Brucato JR, Baratta GA, Strazzulla G. An infrared study of pure and ion irradiated frozen formamide. Astron. Astrophys. 2006;455:395–399. doi: 10.1051/0004-6361:20065095. DOI
Khare BN, et al. Optical Properties of Poly-HCN and their Astronomical Applications. Rev. Can. Chim. 1994;72:678–694. doi: 10.1139/v94-093. PubMed DOI
Chyba CF, Thomas PJ, Brookshaw L, Sagan C. Cometary Delivery of Organic Molecules to the Early Earth. Science. 1990;249:366–373. doi: 10.1126/science.11538074. PubMed DOI
Schaefer L, B. F., Jr. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus. 2007;186:462–483. doi: 10.1016/j.icarus.2006.09.002. DOI
Hazen, R. M. & Sverjensky, D. A. Mineral Surfaces, Geochemical Complexities, and the Origins of Life. Cold Spring Harb. Perspect. Biol. 2 (2010). PubMed PMC
Chyba C, Sagan C. Electrical Energy Sources for Organic Synthesis on the Early Earth. Orig. Life Evol. Biosph. 1991;21:3–17. doi: 10.1007/BF01809509. PubMed DOI
Johnson AP, et al. The Miller volcanic spark discharge experiment. Science (80-.). 2008;322:404. doi: 10.1126/science.1161527. PubMed DOI
Cavosie AJ, Valley JW, Wilde SA. Magmatic delta O-18 in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 2005;235:663–681. doi: 10.1016/j.epsl.2005.04.028. DOI
Claire MW, et al. The evolution of solar flux from 0.1 nm to 160 mu: Quantitative Estimates for Planetary Studies. Astrophys. J. 2012;757(95):1–12.
Mojzsis SJ, et al. Evidence for life on Earth before 3,800 million years ago. Nature. 1996;384:55–59. doi: 10.1038/384055a0. PubMed DOI
Bell EA, Boehnke P, Harrison TM, Mao WL. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA. 2015;112:14518–21. doi: 10.1073/pnas.1517557112. PubMed DOI PMC
Babankova D, et al. Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures. J. Phys. Chem. A. 2006;110:12113–12120. doi: 10.1021/jp063689o. PubMed DOI
Civis S, Babankova D, Cihelkat J, Sazama P, Juha L. Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide. J. Phys. Chem. A. 2008;112:7162–7169. doi: 10.1021/jp712011t. PubMed DOI
Civis S, Ferus M, Zukalova M, Kavan L, Zelinger Z. The application of high-resolution IR spectroscopy and isotope labeling for detailed investigation of TiO2/gas interface reactions. Opt. Mater. (Amst). 2013;36:159–162. doi: 10.1016/j.optmat.2013.04.009. DOI
Babankova D, Civis S, Juha L. Chemical consequences of laser-induced breakdown in molecular gases. Prog. Quantum Electron. 2006;30:75–88. doi: 10.1016/j.pquantelec.2006.09.001. DOI
Civis, S., Ferus, M., Kubelik, P., Chernov, V. E. & Zanozina, E. M. Li I spectra in the 4.65–8.33 micron range: high-L states and oscillator strengths. Astron. Astrophys. 545 (2012).
Civis, S., Ferus, M., Kubelik, P., Jelinek, P. & Chernov, V. E. Potassium spectra in the 700-7000 cm(−1) domain: Transitions involving f-, g-, and h-states. Astron. Astrophys. 541 (2012).
Civis, S. et al. Na I spectra in the 1.4-14 micron range: transitions and oscillator strengths involving f-, g-, and h- states. Astron. Astrophys. 542 (2012).
Ferus M, Cihelka J, Civis S. Formaldehyde in the environment - Determination of formaldehyde by laser and photoacoustic detection. Chem. List. 2008;102:417–426.
Civis S, Kubelik P, Ferus M. Time-Resolved Fourier Transform Emission Spectroscopy of He/CH4 in a Positive Column Discharge. J. Phys. Chem. A. 2012;116:3137–3147. doi: 10.1021/jp211772d. PubMed DOI
Jeilani YA, Nguyen HT, Newallo D, Dimandja J-MD, Nguyen MT. Free radical routes for prebiotic formation of DNA nucleobases from formamide. Phys. Chem. Chem. Phys. 2013;15:21084–21093. doi: 10.1039/c3cp53108b. PubMed DOI
Ferus M, Michalčíková R, Shestivská V, Šponer JJE, Civiš S. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formatione. J. Phys. Chem. 2014;118:719–736. doi: 10.1021/jp411415p. PubMed DOI
Jeilani YA, Nguyen HT, Cardelino BH, Nguyen MT. Free radical pathways for the prebiotic formation of xanthine and isoguanine from formamide. Chem. Phys. Lett. 2014;598:58–64. doi: 10.1016/j.cplett.2014.02.053. DOI
Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (1979).
Horka V, Civis S, Spirko V, Kawaguchi K. The infrared spectrum of CN in its ground electronic state. Collect. Czechoslov. Chem. Commun. 2004;69:73–89. doi: 10.1135/cccc20040073. DOI
Civis S, Sedivcova-Uhlikova T, Kubelik P, Kawaguchi K. Time-resolved Fourier transform emission spectroscopy of A(2)Pi-X-2 Sigma(+) infrared transition of the CN radical. J. Mol. Spectrosc. 2008;250:20–26. doi: 10.1016/j.jms.2008.04.002. DOI
Ferus M, Knizek A, Sponer JJE, Sponer JJE, Civis S. Radical Synthesis of Nucleic Bases from Formamide in Impact Plasma. Chem. List. 2015;109:406–414.
Ferus M, Knizek A, Civiš S. Meteorite-catalyzed synthesis of nucleosides and other prebiotic compounds. Proc. Natl. Acad. Sci. USA. 2015;112:7109–7110. doi: 10.1073/pnas.1507471112. PubMed DOI PMC
Rios AC. Impact synthesis of the RNA bases. Proc. Natl. Acad. Sci. 2015;112:643–644. doi: 10.1073/pnas.1424273112. PubMed DOI PMC
Costes M, Naulin C, Dorthe G. The Dissociation Energy Release of the CN Radical Determined from the CN Internal Energy Release of the C + NO− = CN + O Reaction. Astron. Astrophys. 1990;232:270–276.
Hébrard, E., Dobrijevic, M., Loison, J., Bergeat, A. & Hickson, K. Neutral production of hydrogen isocyanide (HNC) and hydrogencyanide (HCN) in Titan’s upper atmosphere. Astron. Astrophys. 541, Art. No. A21 (2012).
Chou S, et al. Production of N3 upon photolysis of solid nitrogen at 3 K with synchrotron radiation. Angew Chem Int Ed Engl. 2014;3:738–741. doi: 10.1002/anie.201306876. PubMed DOI
Pietrucci F, Saitta AM. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. USA. 2015;112:15030–15035. doi: 10.1073/pnas.1512486112. PubMed DOI PMC
Kim YS, Zhang F, Kaiser RI. Laboratory simulation of Kuiper belt object volatile ices under ionizing radiation: CO-N-2 ices as a case study. Phys. Chem. Chem. Phys. 2011;13:15766–15773. doi: 10.1039/c1cp20658c. PubMed DOI
Zeldovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. (Academic Press INC, 1966).
Ferus M, Kubelik P, Civis S. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy. J. Phys. Chem. A. 2011;115:12132–12141. doi: 10.1021/jp205413d. PubMed DOI
Civis S, et al. Amino acid formation induced by high-power laser in CO2/CO-N-2-H2O gas mixtures. Chem. Phys. Lett. 2004;386:169–173. doi: 10.1016/j.cplett.2004.01.034. DOI
Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres