High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth

. 2017 Jul 24 ; 7 (1) : 6275. [epub] 20170724

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28740207

Grantová podpora
MC_UP_A024_1009 Medical Research Council - United Kingdom

Odkazy

PubMed 28740207
PubMed Central PMC5524942
DOI 10.1038/s41598-017-06489-1
PII: 10.1038/s41598-017-06489-1
Knihovny.cz E-zdroje

Recent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the effect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations. Using continuously scanning time-resolved spectrometry, we have detected ·CN radical and excited CO as the initially most abundant products. Cyano radicals and excited carbon monoxide molecules in particular are reactive, energy-rich species, but are resilient owing to favourable Franck-Condon factors. The subsequent reactions of these first formed excited species lead to the production of ground-state prebiotic building blocks, principally HCN.

Erratum v

PubMed

Zobrazit více v PubMed

McCollom, T. M. In Annual Review of Earth and Planetary Sciences (ed. Jeanloz, R.) 41, 207–229 (Annual Reviews, 2013).

Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 2008;38:105–115. doi: 10.1007/s11084-007-9120-3. PubMed DOI

Saitta AM, Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–73. doi: 10.1073/pnas.1402894111. PubMed DOI PMC

Saladino R, Botta G, Delfino M, Di Mauro E. Meteorites as Catalysts for Prebiotic Chemistry. Chem. Eur. J. 2013;19:16916–16922. doi: 10.1002/chem.201303690. PubMed DOI

Ferus M, et al. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. 2015;112:657–662. doi: 10.1073/pnas.1412072111. PubMed DOI PMC

Sutherland JD. The Origin of Life-Out of the Blue. Angew. Chemie - Int. Ed. 2016;55:104–121. doi: 10.1002/anie.201506585. PubMed DOI

Šponer JE, et al. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys. Chem. Chem. Phys. 2016;18:20047–20066. doi: 10.1039/C6CP00670A. PubMed DOI

Saladino, R. et al. First Evidence on the Role of Heavy Ion Irradiation of Meteorites and Formamide in the Origin of Biomolecules. Orig. Life Evol. Biosph. 1–7, doi:10.1007/s11084-016-9495-0 (2016). PubMed

Saladino R, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC

Ferus M, et al. On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction between Cyano Radicals and Formamide in a High-Energy Impact Event. J. Am. Chem. Soc. 2012;134:20788–20796. doi: 10.1021/ja310421z. PubMed DOI

Chyba C, Sagan C. Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules - an Inventory for the Origin of Life. Nature. 1992;355:125–132. doi: 10.1038/355125a0. PubMed DOI

Civis M, et al. Spectroscopic investigations of high-density-energy plasma transformations in a simulated early reducing atmosphere containing methane, nitrogen and water. Phys. Chem. Chem. Phys. 2016;18:27317–27325. doi: 10.1039/C6CP05025E. PubMed DOI

Ferus M, et al. HNC/HCN Ratio in Acetonitrile, Formamide, and BrCN Discharge. J. Phys. Chem. A. 2011;115:1885–1899. doi: 10.1021/jp1107872. PubMed DOI

Hill RD. An efficient lightning energy-source on the early Earth. Orig. life Evol. Biosph. 1992;22:277–285. doi: 10.1007/BF01810857. PubMed DOI

Geiss J, Rossi AP. On the chronology of lunar origin and evolution Implications for Earth, Mars and the Solar System as a whole. Astron. Astrophys. Rev. 2013;21:1–54. doi: 10.1007/s00159-013-0068-1. DOI

de Niem D, Kuehrt E, Morbidelli A, Motschmann U. Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus. 2012;221:495–507. doi: 10.1016/j.icarus.2012.07.032. DOI

Koeberl, C., Reimold, W. U., McDonald, I. & Rosing, M. Search for petrographic and geochemical evidence for the late heavy bombardment on Earth in early Archean rocks from Isua, Greenland. in Impacts and the Early Earth (eds C., G. I. and K.) 91, 73–97 (Springer-Verlag Berlin, 2000).

Koeberl C. Impact processes on the early Earth. Elements. 2006;2:211–216. doi: 10.2113/gselements.2.4.211. DOI

Hashimoto GL, Abe Y, Sugita S. The chemical composition of the early terrestrial atmosphere: Formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 2007;112:E05010. doi: 10.1029/2006JE002844. DOI

Yang X, Gaillard F, Scaillet B. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet. Sci. Lett. 2014;393:210–219. doi: 10.1016/j.epsl.2014.02.056. DOI

Lunine JI. Physical conditions on the early Earth. Philos. Trans. R. Soc. B - Biol. Sci. 2006;361:1721–1731. doi: 10.1098/rstb.2006.1900. PubMed DOI PMC

Brucato JR, Baratta GA, Strazzulla G. An infrared study of pure and ion irradiated frozen formamide. Astron. Astrophys. 2006;455:395–399. doi: 10.1051/0004-6361:20065095. DOI

Khare BN, et al. Optical Properties of Poly-HCN and their Astronomical Applications. Rev. Can. Chim. 1994;72:678–694. doi: 10.1139/v94-093. PubMed DOI

Chyba CF, Thomas PJ, Brookshaw L, Sagan C. Cometary Delivery of Organic Molecules to the Early Earth. Science. 1990;249:366–373. doi: 10.1126/science.11538074. PubMed DOI

Schaefer L, B. F., Jr. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus. 2007;186:462–483. doi: 10.1016/j.icarus.2006.09.002. DOI

Hazen, R. M. & Sverjensky, D. A. Mineral Surfaces, Geochemical Complexities, and the Origins of Life. Cold Spring Harb. Perspect. Biol. 2 (2010). PubMed PMC

Chyba C, Sagan C. Electrical Energy Sources for Organic Synthesis on the Early Earth. Orig. Life Evol. Biosph. 1991;21:3–17. doi: 10.1007/BF01809509. PubMed DOI

Johnson AP, et al. The Miller volcanic spark discharge experiment. Science (80-.). 2008;322:404. doi: 10.1126/science.1161527. PubMed DOI

Cavosie AJ, Valley JW, Wilde SA. Magmatic delta O-18 in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 2005;235:663–681. doi: 10.1016/j.epsl.2005.04.028. DOI

Claire MW, et al. The evolution of solar flux from 0.1 nm to 160 mu: Quantitative Estimates for Planetary Studies. Astrophys. J. 2012;757(95):1–12.

Mojzsis SJ, et al. Evidence for life on Earth before 3,800 million years ago. Nature. 1996;384:55–59. doi: 10.1038/384055a0. PubMed DOI

Bell EA, Boehnke P, Harrison TM, Mao WL. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA. 2015;112:14518–21. doi: 10.1073/pnas.1517557112. PubMed DOI PMC

Babankova D, et al. Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures. J. Phys. Chem. A. 2006;110:12113–12120. doi: 10.1021/jp063689o. PubMed DOI

Civis S, Babankova D, Cihelkat J, Sazama P, Juha L. Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide. J. Phys. Chem. A. 2008;112:7162–7169. doi: 10.1021/jp712011t. PubMed DOI

Civis S, Ferus M, Zukalova M, Kavan L, Zelinger Z. The application of high-resolution IR spectroscopy and isotope labeling for detailed investigation of TiO2/gas interface reactions. Opt. Mater. (Amst). 2013;36:159–162. doi: 10.1016/j.optmat.2013.04.009. DOI

Babankova D, Civis S, Juha L. Chemical consequences of laser-induced breakdown in molecular gases. Prog. Quantum Electron. 2006;30:75–88. doi: 10.1016/j.pquantelec.2006.09.001. DOI

Civis, S., Ferus, M., Kubelik, P., Chernov, V. E. & Zanozina, E. M. Li I spectra in the 4.65–8.33 micron range: high-L states and oscillator strengths. Astron. Astrophys. 545 (2012).

Civis, S., Ferus, M., Kubelik, P., Jelinek, P. & Chernov, V. E. Potassium spectra in the 700-7000 cm(−1) domain: Transitions involving f-, g-, and h-states. Astron. Astrophys. 541 (2012).

Civis, S. et al. Na I spectra in the 1.4-14 micron range: transitions and oscillator strengths involving f-, g-, and h- states. Astron. Astrophys. 542 (2012).

Ferus M, Cihelka J, Civis S. Formaldehyde in the environment - Determination of formaldehyde by laser and photoacoustic detection. Chem. List. 2008;102:417–426.

Civis S, Kubelik P, Ferus M. Time-Resolved Fourier Transform Emission Spectroscopy of He/CH4 in a Positive Column Discharge. J. Phys. Chem. A. 2012;116:3137–3147. doi: 10.1021/jp211772d. PubMed DOI

Jeilani YA, Nguyen HT, Newallo D, Dimandja J-MD, Nguyen MT. Free radical routes for prebiotic formation of DNA nucleobases from formamide. Phys. Chem. Chem. Phys. 2013;15:21084–21093. doi: 10.1039/c3cp53108b. PubMed DOI

Ferus M, Michalčíková R, Shestivská V, Šponer JJE, Civiš S. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formatione. J. Phys. Chem. 2014;118:719–736. doi: 10.1021/jp411415p. PubMed DOI

Jeilani YA, Nguyen HT, Cardelino BH, Nguyen MT. Free radical pathways for the prebiotic formation of xanthine and isoguanine from formamide. Chem. Phys. Lett. 2014;598:58–64. doi: 10.1016/j.cplett.2014.02.053. DOI

Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (1979).

Horka V, Civis S, Spirko V, Kawaguchi K. The infrared spectrum of CN in its ground electronic state. Collect. Czechoslov. Chem. Commun. 2004;69:73–89. doi: 10.1135/cccc20040073. DOI

Civis S, Sedivcova-Uhlikova T, Kubelik P, Kawaguchi K. Time-resolved Fourier transform emission spectroscopy of A(2)Pi-X-2 Sigma(+) infrared transition of the CN radical. J. Mol. Spectrosc. 2008;250:20–26. doi: 10.1016/j.jms.2008.04.002. DOI

Ferus M, Knizek A, Sponer JJE, Sponer JJE, Civis S. Radical Synthesis of Nucleic Bases from Formamide in Impact Plasma. Chem. List. 2015;109:406–414.

Ferus M, Knizek A, Civiš S. Meteorite-catalyzed synthesis of nucleosides and other prebiotic compounds. Proc. Natl. Acad. Sci. USA. 2015;112:7109–7110. doi: 10.1073/pnas.1507471112. PubMed DOI PMC

Rios AC. Impact synthesis of the RNA bases. Proc. Natl. Acad. Sci. 2015;112:643–644. doi: 10.1073/pnas.1424273112. PubMed DOI PMC

Costes M, Naulin C, Dorthe G. The Dissociation Energy Release of the CN Radical Determined from the CN Internal Energy Release of the C + NO− = CN + O Reaction. Astron. Astrophys. 1990;232:270–276.

Hébrard, E., Dobrijevic, M., Loison, J., Bergeat, A. & Hickson, K. Neutral production of hydrogen isocyanide (HNC) and hydrogencyanide (HCN) in Titan’s upper atmosphere. Astron. Astrophys. 541, Art. No. A21 (2012).

Chou S, et al. Production of N3 upon photolysis of solid nitrogen at 3 K with synchrotron radiation. Angew Chem Int Ed Engl. 2014;3:738–741. doi: 10.1002/anie.201306876. PubMed DOI

Pietrucci F, Saitta AM. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. USA. 2015;112:15030–15035. doi: 10.1073/pnas.1512486112. PubMed DOI PMC

Kim YS, Zhang F, Kaiser RI. Laboratory simulation of Kuiper belt object volatile ices under ionizing radiation: CO-N-2 ices as a case study. Phys. Chem. Chem. Phys. 2011;13:15766–15773. doi: 10.1039/c1cp20658c. PubMed DOI

Zeldovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. (Academic Press INC, 1966).

Ferus M, Kubelik P, Civis S. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy. J. Phys. Chem. A. 2011;115:12132–12141. doi: 10.1021/jp205413d. PubMed DOI

Civis S, et al. Amino acid formation induced by high-power laser in CO2/CO-N-2-H2O gas mixtures. Chem. Phys. Lett. 2004;386:169–173. doi: 10.1016/j.cplett.2004.01.034. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...