• This record comes from PubMed

Cyclic Ion Mobility of Isomeric New Psychoactive Substances Employing Characteristic Arrival Time Distribution Profiles and Adduct Separation

. 2024 Aug 07 ; 35 (8) : 1733-1742. [epub] 20240701

Language English Country United States Media print-electronic

Document type Journal Article

Analysis of new psychoactive substances (NPS), which is essential for toxicological and forensic reasons, can be made complicated by the presence of isomers. Ion mobility has been used as a standalone technique or coupled to mass spectrometry to detect and identify NPS. However, isomer separation has so far chiefly relied on chromatography. Here we report on the determination of isomeric ratios using cyclic ion mobility-mass spectrometry without any chromatographic separation. Isomers were distinguished by mobility separation of lithium adducts. Alternatively, we used arrival time distribution (ATD) profiles that were characteristic of individual isomers and were acquired for protonated molecules or fragment ions. Both approaches provided comparable results. Calculations were used to determine the structures and collision cross sections of both protonated and lithiated isomers that accurately characterized their ion mobility properties. The applicability of ATD profiles to isomer differentiation was demonstrated using direct infusion and flow injection analysis with electrospray of solutions, as well as desorption electrospray of solid samples. Data processing was performed by applying multiple linear regression to the ATD profiles. Using the proposed ATD profile-based approach, the relationships between the determined and given content of isomers showed good linearity with coefficients of determination typically greater than 0.99. Flow injection analysis using an autosampler allowed us to rapidly determine isomeric ratios in a sample containing two isomeric pairs with a minor isomer of 10% (determined 9.3% of 3-MMC and 11.0% of 3-FMC in a mixture with buphedrone and 4-FMC). The proposed approach is not only useful for NPS, but also may be applicable to small isomeric molecules analyzed by ion mobility when complete separation of isomers is not achieved.

See more in PubMed

United Nations Office on Drugs and Crime . World Drug Report 2023, Executive Summary; United Nations publication: Vienna, Austria, 2023.

de Campos E. G.; Krotulski A. J.; De Martinis B. S.; Costa J. L. Identification of synthetic cathinones in seized materials: A review of analytical strategies applied in forensic chemistry. WIREs Forensic Sci. 2022, 4 (5), e145510.1002/wfs2.1455. DOI

Esteve-Turrillas F. A.; Armenta S.; de la Guardia M. Sample preparation strategies for the determination of psychoactive substances in biological fluids. J. Chromatogr. A 2020, 1633, 461615.10.1016/j.chroma.2020.461615. PubMed DOI

Di Trana A.; Berardinelli D.; Tini A.; Zaami S. The targeted analysis of New Psychoactive Substances in oral fluid through chromatographic-spectrometric methods: review of recent findings. Eur. Rev. Med. Pharmacol. Sci. 2022, 26 (3), 750–754. 10.26355/eurrev_202202_27982. PubMed DOI

Florou D.; Boumba V. A. Hair analysis for New Psychoactive Substances (NPS): Still far from becoming the tool to study NPS spread in the community?. Toxicol. Rep. 2021, 8, 1699–1720. 10.1016/j.toxrep.2021.09.003. PubMed DOI PMC

Bolcato V.; Carelli C.; Radogna A.; Freni F.; Moretti M.; Morini L. New Synthetic Cathinones and Phenylethylamine Derivatives Analysis in Hair: A Review. Molecules 2021, 26 (20), 6143.10.3390/molecules26206143. PubMed DOI PMC

Ferrari Júnior E.; Leite B. H. M.; Gomes E. B.; Vieira T. M.; Sepulveda P.; Caldas E. D. Fatal cases involving new psychoactive substances and trends in analytical techniques. Front, Toxicol. 2022, 4, 1033733.10.3389/ftox.2022.1033733. PubMed DOI PMC

Bijlsma L.; Bade R.; Been F.; Celma A.; Castiglioni S. Perspectives and challenges associated with the determination of new psychoactive substances in urine and wastewater - A tutorial. Anal. Chim. Acta 2021, 1145, 132–147. 10.1016/j.aca.2020.08.058. PubMed DOI

Klingberg J.; Keen B.; Cawley A.; Pasin D.; Fu S. Developments in high-resolution mass spectrometric analyses of new psychoactive substances. Arch. Toxicol. 2022, 96 (4), 949–967. 10.1007/s00204-022-03224-2. PubMed DOI PMC

Matey J. M.; Zapata F.; Menéndez-Quintanal L. M.; Montalvo G.; García-Ruiz C. Identification of new psychoactive substances and their metabolites using non-targeted detection with high-resolution mass spectrometry through diagnosing fragment ions/neutral loss analysis. Talanta 2023, 265, 124816.10.1016/j.talanta.2023.124816. PubMed DOI

Fabregat-Safont D.; Sancho J. V.; Hernández F.; Ibáñez M. The key role of mass spectrometry in comprehensive research on new psychoactive substances. J. Mass Spectrom. 2021, 56 (7), e467310.1002/jms.4673. PubMed DOI

Shirley Lee H. Z.; Koh H. B.; Tan S.; Goh B. J.; Lim R.; Lim J. L. W.; Angeline Yap T. W. Identification of closely related new psychoactive substances (NPS) using solid deposition gas-chromatography infra-red detection (GC-IRD) spectroscopy. Forensic Sci.Int. 2019, 299, 21–33. 10.1016/j.forsciint.2019.03.025. PubMed DOI

Skultety L.; Frycak P.; Qiu C.; Smuts J.; Shear-Laude L.; Lemr K.; Mao J. X.; Kroll P.; Schug K. A.; Szewczak A.; et al. Resolution of isomeric new designer stimulants using gas chromatography - Vacuum ultraviolet spectroscopy and theoretical computations. Anal. Chim. Acta 2017, 971, 55–67. 10.1016/j.aca.2017.03.023. PubMed DOI

Boronat Ena M. d. M.; Cowan D. A.; Abbate V. Ambient ionization mass spectrometry applied to new psychoactive substance analysis. Mass Spectrom. Rev. 2023, 42 (1), 3–34. 10.1002/mas.21695. PubMed DOI

Pauk V.; Žihlová V.; Borovcová L.; Havlíček V.; Schug K.; Lemr K. Fast separation of selected cathinones and phenylethylamines by supercritical fluid chromatography. J. Chromatogr. A 2015, 1423, 169–176. 10.1016/j.chroma.2015.10.061. PubMed DOI

Borovcová L.; Pauk V.; Lemr K. Analysis of new psychoactive substances in human urine by ultra-high performance supercritical fluid and liquid chromatography: Validation and comparison. J. Sep. Sci. 2018, 41 (10), 2288–2295. 10.1002/jssc.201800006. PubMed DOI

Armenta S.; Garrigues S.; de la Guardia M.; Brassier J.; Alcalà M.; Blanco M.; Perez-Alfonso C.; Galipienso N. Detection and characterization of emerging psychoactive substances by ion mobility spectrometry. Drug Test. Anal. 2015, 7 (4), 280–289. 10.1002/dta.1678. PubMed DOI

Metternich S.; Zoerntlein S.; Schoenberger T.; Huhn C. Ion mobility spectrometry as a fast screening tool for synthetic cannabinoids to uncover drug trafficking in jail via herbal mixtures, paper, food, and cosmetics. Drug Test. Anal. 2019, 11 (6), 833–846. 10.1002/dta.2565. PubMed DOI

Norman C.; McKirdy B.; Walker G.; Dugard P.; NicDaeid N.; McKenzie C. Large-scale evaluation of ion mobility spectrometry for the rapid detection of synthetic cannabinoid receptor agonists in infused papers in prisons. Drug Test. Anal. 2021, 13 (3), 644–663. 10.1002/dta.2945. PubMed DOI

Gallart-Mateu D.; Bejar-Grimalt J.; Esteve-Turrillas F. A.; Armenta S.; Garrigues S.; de la Guardia M. A synergetic approach based on infrared spectroscopy and ion mobility spectrometry for the analysis of seized blotters: Boosting performance. Microchem. J. 2022, 181, 107810.10.1016/j.microc.2022.107810. DOI

Gwak S.; Almirall J. R. Rapid screening of 35 new psychoactive substances by ion mobility spectrometry (IMS) and direct analysis in real time (DART) coupled to quadrupole time-of-flight mass spectrometry (QTOF-MS). Drug Test. Anal. 2015, 7 (10), 884–893. 10.1002/dta.1783. PubMed DOI

Yanini A.; Esteve-Turrillas F. A.; de la Guardia M.; Armenta S. Ion mobility spectrometry and high resolution mass-spectrometry as methodologies for rapid identification of the last generation of new psychoactive substances. J. Chromatogr. A 2018, 1574, 91–100. 10.1016/j.chroma.2018.09.006. PubMed DOI

Denia A.; Esteve-Turrillas F. A.; Armenta S. Analysis of drugs including illicit and new psychoactive substances in oral fluids by gas chromatography-drift tube ion mobility spectrometry. Talanta 2022, 238, 122966.10.1016/j.talanta.2021.122966. PubMed DOI

Joshi M.; Cetroni B.; Camacho A.; Krueger C.; Midey A. J. Analysis of synthetic cathinones and associated psychoactive substances by ion mobility spectrometry. Forensic Sci.Int. 2014, 244, 196–206. 10.1016/j.forsciint.2014.08.033. PubMed DOI

Kanu A. B.; Brandt S. D.; Williams M. D.; Zhang N.; Hill H. H. Analysis of Psychoactive Cathinones and Tryptamines by Electrospray Ionization Atmospheric Pressure Ion Mobility Time-of-Flight Mass Spectrometry. Anal. Chem. 2013, 85 (18), 8535–8542. 10.1021/ac401951a. PubMed DOI

Sysoev A. A.; Poteshin S. S.; Chernyshev D. M.; Karpov A. V.; Tuzkov Y. B.; Kyzmin V. V.; Sysoev A. A. Analysis of New Synthetic Drugs by Ion Mobility Time-of-Flight Mass Spectrometry. Eur. J. Mass Spectrom. 2014, 20 (2), 185–192. 10.1255/ejms.1262. PubMed DOI

Mardal M.; Dalsgaard P. W.; Qi B.; Mollerup C. B.; Annaert P.; Linnet K. Metabolism of the synthetic cannabinoids AMB-CHMICA and 5C-AKB48 in pooled human hepatocytes and rat hepatocytes analyzed by UHPLC-(IMS)-HR-MSE. J. Chromatogr. B 2018, 1083, 189–197. 10.1016/j.jchromb.2018.03.016. PubMed DOI

Bergstroem M. A.; Loevgren H.; Abrahamsson A.; Eriksson E. K.; Andersson M. L.; Komorowska M.; Axelsson M. A. B. Rethinking drug analysis in health care: high-throughput analysis of 71 drugs of abuse in oral fluid using ion mobility-high-resolution mass spectrometry. J. Anal. Toxicol. 2022, 46 (7), 765–775. 10.1093/jat/bkab114. PubMed DOI

Aderorho R.; Chouinard C. D. Improved separation of fentanyl isomers using metal cation adducts and high-resolution ion mobility-mass spectrometry. Drug Test. Anal. 2024, 16 (4), 369–379. 10.1002/dta.3550. PubMed DOI

Majeed H. A.; Bos T. S.; Voeten R. L. C.; Kranenburg R. F.; van Asten A. C.; Somsen G. W.; Kohler I. Trapped ion mobility mass spectrometry of new psychoactive substances: Isomer-specific identification of ring-substituted cathinones. Anal. Chim. Acta 2023, 1264, 341276.10.1016/j.aca.2023.341276. PubMed DOI

Hermannová M.; Iordache A.-M.; Slováková K.; Havlíček V.; Pelantová H.; Lemr K. Arrival time distributions of product ions reveal isomeric ratio of deprotonated molecules in ion mobility-mass spectrometry of hyaluronan-derived oligosaccharides. J. Mass Spectrom. 2015, 50 (6), 854–863. 10.1002/jms.3596. PubMed DOI

Borovcová L.; Hermannová M.; Pauk V.; Šimek M.; Havlíček V.; Lemr K. Simple area determination of strongly overlapping ion mobility peaks. Anal. Chim. Acta 2017, 981, 71–79. 10.1016/j.aca.2017.05.003. PubMed DOI

Giles K.; Ujma J.; Wildgoose J.; Pringle S.; Richardson K.; Langridge D.; Green M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91 (13), 8564–8573. 10.1021/acs.analchem.9b01838. PubMed DOI

Bush M. F.; Campuzano I. D. G.; Robinson C. V. Ion Mobility Mass Spectrometry of Peptide Ions: Effects of Drift Gas and Calibration Strategies. Anal. Chem. 2012, 84 (16), 7124–7130. 10.1021/ac3014498. PubMed DOI

Bush M. F.; Hall Z.; Giles K.; Hoyes J.; Robinson C. V.; Ruotolo B. T. Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology. Anal. Chem. 2010, 82 (22), 9557–9565. 10.1021/ac1022953. PubMed DOI

McCullagh M.; Goscinny S.; Palmer M.; Ujma J. Investigations into pesticide charge site isomers using conventional IM and cIM systems. Talanta 2021, 234, 122604.10.1016/j.talanta.2021.122604. PubMed DOI

Wan J.; Nytka M.; Qian H.; Lemr K.; Tureček F. Do d(GCGAAGC) Cations Retain the Hairpin Structure in the Gas Phase? A Cyclic Ion Mobility Mass Spectrometry and Density Functional Theory Computational Study. J. Am. Soc. Mass. Spectrom. 2023, 34 (10), 2323–2340. 10.1021/jasms.3c00228. PubMed DOI

Dodds J. N.; May J. C.; McLean J. A. Correlating Resolving Power, Resolution, and Collision Cross Section: Unifying Cross-Platform Assessment of Separation Efficiency in Ion Mobility Spectrometry. Anal. Chem. 2017, 89 (22), 12176–12184. 10.1021/acs.analchem.7b02827. PubMed DOI PMC

Kováč A.; Majerová P.; Nytka M.; Cechová M. Z.; Bednář P.; Hájek R.; Cooper-Shepherd D. A.; Muck A.; Lemr K. Separation of Isomeric Tau Phosphopeptides from Alzheimer’s Disease Brain by Cyclic Ion Mobility Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2023, 34, 394.10.1021/jasms.2c00289. PubMed DOI PMC

Zheng X.; Zhang X.; Schocker N. S.; Renslow R. S.; Orton D. J.; Khamsi J.; Ashmus R. A.; Almeida I. C.; Tang K.; Costello C. E.; et al. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses. Anal. Bioanal. Chem. 2017, 409 (2), 467–476. 10.1007/s00216-016-9866-4. PubMed DOI PMC

de Bruin C. R.; Hennebelle M.; Vincken J. P.; de Bruijn W. J. C. Separation of flavonoid isomers by cyclic ion mobility mass spectrometry. Anal. Chim. Acta 2023, 1244, 340774.10.1016/j.aca.2022.340774. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...