Separation of Isomeric Tau Phosphopeptides from Alzheimer's Disease Brain by Cyclic Ion Mobility Mass Spectrometry

. 2023 Mar 01 ; 34 (3) : 394-400. [epub] 20230127

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36706338

Alzheimer's disease (AD) is a neurodegenerative disorder of increasing concern. It belongs to diseases termed tauopathies which are characterized by inclusions of abnormally hyperphosphorylated and truncated forms of the protein tau. Studies of tauopathies often focus on detection and characterization of these aberrant tau proteoforms, in particular the phosphorylation sites, which represent a significant analytical challenge for example when several phosphosites can be present on the same peptide. Such isomers can even be difficult to fully separate chromatographically. Since recently introduced cyclic ion mobility-mass spectrometry can offer different selectivity, we have investigated the closely positioned phosphorylation sites S214, T212, and T217 of a tryptic peptide from proline rich region of tau-TPSLPTPPTREPK. The conformational heterogeneity of the isomeric peptides in the gas phase hindered their separation due to their overlapping arrival time distributions. Increasing the resolution of the analysis alone is insufficient to distinguish the peptides in a mixture typical of patient samples. We therefore developed a method based on a combination of collision-induced dissociation, isomeric product ions (m/z 677) mobility separation and post-mobility dissociation to aid in analyzing the isomeric phosphopeptides of tau in diseased brain extract. For all three isomers (T212, S214, and T217), the ion mobility signal of the ion at m/z 677 was still observable at the concentration of 0.1 nmol/L. This work not only offers insights into the phosphorylation of tau protein in AD but also provides an analytical workflow for the characterization of challenging pathological protein modifications in neurodegenerative diseases.

Zobrazit více v PubMed

Iqbal K.; Liu F.; Gong C. X. Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol 2016, 12 (1), 15–27. 10.1038/nrneurol.2015.225. PubMed DOI

Wang Y.; Mandelkow E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17 (1), 22–35. 10.1038/nrn.2015.1. PubMed DOI

Noble W.; Hanger D. P.; Miller C. C.; Lovestone S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 2013, 4, 83.10.3389/fneur.2013.00083. PubMed DOI PMC

Sergeant N.; Delacourte A.; Buee L. Tau protein as a differential biomarker of tauopathies. Biochim. Biophys. Acta 2005, 1739 (2–3), 179–197. 10.1016/j.bbadis.2004.06.020. PubMed DOI

Fossati S.; Ramos Cejudo J.; Debure L.; Pirraglia E.; Sone J. Y.; Li Y.; Chen J.; Butler T.; Zetterberg H.; Blennow K.; de Leon M. J. Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer’s disease. Alzheimers Dement (Amst) 2019, 11 (1), 483–492. 10.1016/j.dadm.2019.05.001. PubMed DOI PMC

McAvoy T.; Lassman M. E.; Spellman D. S.; Ke Z.; Howell B. J.; Wong O.; Zhu L.; Tanen M.; Struyk A.; Laterza O. F. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry. Clin. Chem. 2014, 60 (4), 683–689. 10.1373/clinchem.2013.216515. PubMed DOI

Barthelemy N. R.; Fenaille F.; Hirtz C.; Sergeant N.; Schraen-Maschke S.; Vialaret J.; Buee L.; Gabelle A.; Junot C.; Lehmann S.; Becher F. Tau Protein Quantification in Human Cerebrospinal Fluid by Targeted Mass Spectrometry at High Sequence Coverage Provides Insights into Its Primary Structure Heterogeneity. J. Proteome Res. 2016, 15 (2), 667–676. 10.1021/acs.jproteome.5b01001. PubMed DOI

Barthelemy N. R.; Mallipeddi N.; Moiseyev P.; Sato C.; Bateman R. J. Tau Phosphorylation Rates Measured by Mass Spectrometry Differ in the Intracellular Brain vs. Extracellular Cerebrospinal Fluid Compartments and Are Differentially Affected by Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 121.10.3389/fnagi.2019.00121. PubMed DOI PMC

Hanes J.; Kovac A.; Kvartsberg H.; Kontsekova E.; Fialova L.; Katina S.; Kovacech B.; Stevens E.; Hort J.; Vyhnalek M.; Boonkamp L.; Novak M.; Zetterberg H.; Hansson O.; Scheltens P.; Blennow K.; Teunissen C. E.; Zilka N. Evaluation of a novel immunoassay to detect p-tau Thr217 in the CSF to distinguish Alzheimer disease from other dementias. Neurology 2020, 95 (22), e3026–e3035. 10.1212/WNL.0000000000010814. PubMed DOI PMC

Palmqvist S.; Janelidze S.; Quiroz Y. T.; Zetterberg H.; Lopera F.; Stomrud E.; Su Y.; Chen Y.; Serrano G. E.; Leuzy A.; Mattsson-Carlgren N.; Strandberg O.; Smith R.; Villegas A.; Sepulveda-Falla D.; Chai X.; Proctor N. K.; Beach T. G.; Blennow K.; Dage J. L.; Reiman E. M.; Hansson O. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324 (8), 772–781. 10.1001/jama.2020.12134. PubMed DOI PMC

Barthelemy N. R.; Bateman R. J.; Hirtz C.; Marin P.; Becher F.; Sato C.; Gabelle A.; Lehmann S. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res. Ther. 2020, 12 (1), 26.10.1186/s13195-020-00596-4. PubMed DOI PMC

Mair W.; Muntel J.; Tepper K.; Tang S.; Biernat J.; Seeley W. W.; Kosik K. S.; Mandelkow E.; Steen H.; Steen J. A. FLEXITau: Quantifying Post-translational Modifications of Tau Protein in Vitro and in Human Disease. Anal. Chem. 2016, 88 (7), 3704–3714. 10.1021/acs.analchem.5b04509. PubMed DOI PMC

Arndt J. R.; Wormwood Moser K. L.; Van Aken G.; Doyle R. M.; Talamantes T.; DeBord D.; Maxon L.; Stafford G.; Fjeldsted J.; Miller B.; Sherman M. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. J. Am. Soc. Mass Spectrom. 2021, 32 (8), 2019–2032. 10.1021/jasms.0c00434. PubMed DOI

Shvartsburg A. A.; Creese A. J.; Smith R. D.; Cooper H. J. Separation of peptide isomers with variant modified sites by high-resolution differential ion mobility spectrometry. Anal. Chem. 2010, 82 (19), 8327–8334. 10.1021/ac101878a. PubMed DOI PMC

Ibrahim Y. M.; Shvartsburg A. A.; Smith R. D.; Belov M. E. Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry. Anal. Chem. 2011, 83 (14), 5617–5623. 10.1021/ac200719n. PubMed DOI PMC

Shvartsburg A. A.; Singer D.; Smith R. D.; Hoffmann R. Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues. Anal. Chem. 2011, 83 (13), 5078–5085. 10.1021/ac200985s. PubMed DOI PMC

Giles K.; Ujma J.; Wildgoose J.; Pringle S.; Richardson K.; Langridge D.; Green M. A Cyclic Ion Mobility-Mass Spectrometry System. Anal. Chem. 2019, 91 (13), 8564–8573. 10.1021/acs.analchem.9b01838. PubMed DOI

Suarez-Calvet M.; Karikari T. K; Ashton N. J; Lantero Rodriguez J.; Mila-Aloma M.; Gispert J. D.; Salvado G.; Minguillon C.; Fauria K.; Shekari M.; Grau-Rivera O.; Arenaza-Urquijo E. M; Sala-Vila A.; Sanchez-Benavides G.; Gonzalez-de-Echavarri J. M.; Kollmorgen G.; Stoops E.; Vanmechelen E.; Zetterberg H.; Blennow K.; Molinuevo J. L.; Beteta A.; Cacciaglia R.; Canas A.; Deulofeu C.; Cumplido I.; Dominguez R.; Emilio M.; Falcon C.; Fuentes S.; Hernandez L.; Huesa G.; Huguet J.; Marne P.; Menchon T.; Operto G.; Polo A.; Pradas S.; Soteras A.; Vilanova M.; Vilor-Tejedor N. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Abeta pathology are detected. EMBO Mol. Med. 2020, 12 (12), e1292110.15252/emmm.202012921. PubMed DOI PMC

Huseby C. J.; Hoffman C. N.; Cooper G. L.; Cocuron J.-C.; Alonso A. P.; Thomas S. N.; Yang A. J.; Kuret J. Quantification of Tau Protein Lysine Methylation in Aging and Alzheimer’s Disease. JAD 2019, 71 (3), 979–991. 10.3233/JAD-190604. PubMed DOI PMC

Li L.; Jiang Y.; Hu W.; Tung Y. C.; Dai C.; Chu D.; Gong C. X.; Iqbal K.; Liu F. Pathological Alterations of Tau in Alzheimer’s Disease and 3xTg-AD Mouse Brains. Mol. Neurobiol. 2019, 56 (9), 6168–6183. 10.1007/s12035-019-1507-4. PubMed DOI

Karikari T. K.; Pascoal T. A.; Ashton N. J.; Janelidze S.; Benedet A. L.; Rodriguez J. L.; Chamoun M.; Savard M.; Kang M. S.; Therriault J.; Scholl M.; Massarweh G.; Soucy J. P.; Hoglund K.; Brinkmalm G.; Mattsson N.; Palmqvist S.; Gauthier S.; Stomrud E.; Zetterberg H.; Hansson O.; Rosa-Neto P.; Blennow K. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020, 19 (5), 422–433. 10.1016/S1474-4422(20)30071-5. PubMed DOI

Jack C. R.; Bennett D. A.; Blennow K.; Carrillo M. C.; Dunn B.; Haeberlein S. B.; Holtzman D. M.; Jagust W.; Jessen F.; Karlawish J.; Liu E.; Molinuevo J. L.; Montine T.; Phelps C.; Rankin K. P.; Rowe C. C.; Scheltens P.; Siemers E.; Snyder H. M.; Sperling R.; Elliott C.; Masliah E.; Ryan L.; Silverberg N. Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018, 14 (4), 535–562. 10.1016/j.jalz.2018.02.018. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...