Immune Evasion, a Potential Mechanism of Trichothecenes: New Insights into Negative Immune Regulations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu úvodníky, úvodní články
Grantová podpora
Excellence Project
UHK
CEP - Centrální evidence projektů
PubMed
30355984
PubMed Central
PMC6275004
DOI
10.3390/ijms19113307
PII: ijms19113307
Knihovny.cz E-zdroje
- Klíčová slova
- T-2 toxin, immune evasion, immunotoxicity, negative immune regulations, trichothecenes,
- MeSH
- imunitní únik * MeSH
- imunosupresiva farmakologie terapeutické užití MeSH
- lidé MeSH
- trichotheceny farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- úvodní články MeSH
- úvodníky MeSH
- Názvy látek
- imunosupresiva MeSH
- trichotheceny MeSH
Days ago, the Nobel Prize in Physiology or Medicine 2018 was awarded jointly to James P. Allison and Tasuku Honjo "for their discovery of cancer therapy by inhibition of negative immune regulation". This news has increased the attention on immunotoxicity and immune evasion mechanisms, which are once again hot research topics. Actually, increasing lines of evidence show that trichothecene mycotoxins have a strong immunosuppressive effect. These mycotoxins suppress the host immunity and make them more sensitive to the infection of pathogens, including bacteria and viruses. However, the underlying mechanism(s) in this context is still poorly understood. Interestingly, recent work showed that an immune evasion mechanism might be involved in trichothecene immunotoxicity. In this work, we discuss the potential immune evasion mechanism in trichothecene immunotoxicity. More importantly, under these circumstances, we are pleased to compile a Special Issue entitled "Biochemistry, Molecular Biology, and Toxicology of Natural and Synthetic Toxins" for the International Journal of Molecular Sciences (IJMS). Researchers are encouraged to share their latest interesting findings with the readers of IJMS.
College of Life Science Yangtze University Jinzhou 434025 China
College of Veterinary Medicine Nanjing Agricultural University Nanjing 210095 China
Zobrazit více v PubMed
Zhang J., Zhang H., Liu S.L., Wu W.D., Zhang H.B. Comparison of anorectic potencies of type a trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxins. 2018;10:179. doi: 10.3390/toxins10050179. PubMed DOI PMC
Wu Q.H., Wang X., Nepovimova E., Miron A., Liu Q.Y., Wang Y., Su D.X., Yang H.L., Li L., Kuca K. Trichothecenes: Immunomodulatory effects, mechanisms, and anti-cancer potential. Arch. Toxicol. 2017;91:3737–3785. doi: 10.1007/s00204-017-2118-3. PubMed DOI
Wang Z., Wu Q., Kuca K., Dohnal V., Tian Z. Deoxynivalenol: Signaling pathways and human exposure risk assessment-an update. Arch. Toxicol. 2014;88:1915–1928. doi: 10.1007/s00204-014-1354-z. PubMed DOI
Wu Q., Wang X., Wan D., Li J., Yuan Z. Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal. 2014;26:2951–2960. doi: 10.1016/j.cellsig.2014.09.013. PubMed DOI
Wu Q.H., Wang X., Yang W., Nussler A., Xiong L.Y., Kuca K., Dohnal V., Zhang X.J., Yuan Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol. 2014;88:1309–1326. doi: 10.1007/s00204-014-1280-0. PubMed DOI
Pestka J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010;84:663–679. doi: 10.1007/s00204-010-0579-8. PubMed DOI
The Nobel Prize in Physiology or Medicine 2018. [(accessed on 4 October 2018)]; Available online: https://www.nobelprize.org/prizes/medicine/2018/summary/
Vari F., Arpon D., Keane C., Hertzberg M.S., Talaulikar D., Jain S., Cui Q., Han E., Tobin J., Bird R., et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131:1809–1819. doi: 10.1182/blood-2017-07-796342. PubMed DOI PMC
Spranger S., Gajewski T.F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer. 2018;18:139–147. doi: 10.1038/nrc.2017.117. PubMed DOI PMC
Muenst S., Läubli H., Soysal SD., Zippelius A., Tzankov A., Hoeller S. The immune system and cancer evasion strategies: Therapeutic concepts. J. Intern. Med. 2016;279:541–562. doi: 10.1111/joim.12470. PubMed DOI
Li M., Cuff C.F., Pestka J.J. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-γ responses. Toxicol. Appl. Pharmacol. 2006;214:318–325. doi: 10.1016/j.taap.2006.01.007. PubMed DOI PMC
Pinton P., Accensi F., Beauchamp E., Cossalter A.M., Callu P., Grosjean F., Oswald I.P. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett. 2008;177:215–222. doi: 10.1016/j.toxlet.2008.01.015. PubMed DOI
Sugiyama K., Muroi M., Tanamoto K., Nishijima M., Suqita-Konishi Y. Deoxynivalenol and nivalenol inhibit lipopolysaccharide-induced nitric oxide production by mouse macrophage cells. Toxicol. Lett. 2010;192:150–154. doi: 10.1016/j.toxlet.2009.10.020. PubMed DOI
Sugiyama K., Muroi M., Kinoshita M., Hamada O., Minai Y., Sugita-Konishi Y., Kamata Y., Tanamoto K. NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J. Toxicol. Sci. 2016;41:273–279. doi: 10.2131/jts.41.273. PubMed DOI
Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape