Immune Evasion, a Potential Mechanism of Trichothecenes: New Insights into Negative Immune Regulations

. 2018 Oct 24 ; 19 (11) : . [epub] 20181024

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu úvodníky, úvodní články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30355984

Grantová podpora
Excellence Project UHK CEP - Centrální evidence projektů

Days ago, the Nobel Prize in Physiology or Medicine 2018 was awarded jointly to James P. Allison and Tasuku Honjo "for their discovery of cancer therapy by inhibition of negative immune regulation". This news has increased the attention on immunotoxicity and immune evasion mechanisms, which are once again hot research topics. Actually, increasing lines of evidence show that trichothecene mycotoxins have a strong immunosuppressive effect. These mycotoxins suppress the host immunity and make them more sensitive to the infection of pathogens, including bacteria and viruses. However, the underlying mechanism(s) in this context is still poorly understood. Interestingly, recent work showed that an immune evasion mechanism might be involved in trichothecene immunotoxicity. In this work, we discuss the potential immune evasion mechanism in trichothecene immunotoxicity. More importantly, under these circumstances, we are pleased to compile a Special Issue entitled "Biochemistry, Molecular Biology, and Toxicology of Natural and Synthetic Toxins" for the International Journal of Molecular Sciences (IJMS). Researchers are encouraged to share their latest interesting findings with the readers of IJMS.

Zobrazit více v PubMed

Zhang J., Zhang H., Liu S.L., Wu W.D., Zhang H.B. Comparison of anorectic potencies of type a trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and neosolaniol. Toxins. 2018;10:179. doi: 10.3390/toxins10050179. PubMed DOI PMC

Wu Q.H., Wang X., Nepovimova E., Miron A., Liu Q.Y., Wang Y., Su D.X., Yang H.L., Li L., Kuca K. Trichothecenes: Immunomodulatory effects, mechanisms, and anti-cancer potential. Arch. Toxicol. 2017;91:3737–3785. doi: 10.1007/s00204-017-2118-3. PubMed DOI

Wang Z., Wu Q., Kuca K., Dohnal V., Tian Z. Deoxynivalenol: Signaling pathways and human exposure risk assessment-an update. Arch. Toxicol. 2014;88:1915–1928. doi: 10.1007/s00204-014-1354-z. PubMed DOI

Wu Q., Wang X., Wan D., Li J., Yuan Z. Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal. 2014;26:2951–2960. doi: 10.1016/j.cellsig.2014.09.013. PubMed DOI

Wu Q.H., Wang X., Yang W., Nussler A., Xiong L.Y., Kuca K., Dohnal V., Zhang X.J., Yuan Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol. 2014;88:1309–1326. doi: 10.1007/s00204-014-1280-0. PubMed DOI

Pestka J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010;84:663–679. doi: 10.1007/s00204-010-0579-8. PubMed DOI

The Nobel Prize in Physiology or Medicine 2018. [(accessed on 4 October 2018)]; Available online: https://www.nobelprize.org/prizes/medicine/2018/summary/

Vari F., Arpon D., Keane C., Hertzberg M.S., Talaulikar D., Jain S., Cui Q., Han E., Tobin J., Bird R., et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131:1809–1819. doi: 10.1182/blood-2017-07-796342. PubMed DOI PMC

Spranger S., Gajewski T.F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer. 2018;18:139–147. doi: 10.1038/nrc.2017.117. PubMed DOI PMC

Muenst S., Läubli H., Soysal SD., Zippelius A., Tzankov A., Hoeller S. The immune system and cancer evasion strategies: Therapeutic concepts. J. Intern. Med. 2016;279:541–562. doi: 10.1111/joim.12470. PubMed DOI

Li M., Cuff C.F., Pestka J.J. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-γ responses. Toxicol. Appl. Pharmacol. 2006;214:318–325. doi: 10.1016/j.taap.2006.01.007. PubMed DOI PMC

Pinton P., Accensi F., Beauchamp E., Cossalter A.M., Callu P., Grosjean F., Oswald I.P. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett. 2008;177:215–222. doi: 10.1016/j.toxlet.2008.01.015. PubMed DOI

Sugiyama K., Muroi M., Tanamoto K., Nishijima M., Suqita-Konishi Y. Deoxynivalenol and nivalenol inhibit lipopolysaccharide-induced nitric oxide production by mouse macrophage cells. Toxicol. Lett. 2010;192:150–154. doi: 10.1016/j.toxlet.2009.10.020. PubMed DOI

Sugiyama K., Muroi M., Kinoshita M., Hamada O., Minai Y., Sugita-Konishi Y., Kamata Y., Tanamoto K. NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol. J. Toxicol. Sci. 2016;41:273–279. doi: 10.2131/jts.41.273. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...