Hypoxia and Cellular Senescence, Emerging Toxic Mechanisms of Mycotoxins and Toxins: A New Understanding of the Negative Immune Regulations

. 2022 Dec 16 ; 14 (12) : . [epub] 20221216

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu úvodníky

Perzistentní odkaz   https://www.medvik.cz/link/pmid36548777

Zobrazit více v PubMed

Alvito P., Pereira-da-Silva L. Mycotoxin Exposure during the First 1000 Days of Life and Its Impact on Children’s Health: A Clinical Overview. Toxins. 2022;14:189. doi: 10.3390/toxins14030189. PubMed DOI PMC

Deng Y., You L., Nepovimova E., Wang X., Musilek K., Wu Q., Wu W., Kuca K. Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans. Trends Food Sci. Technol. 2021;110:551–558. doi: 10.1016/j.tifs.2021.02.038. DOI

Kraft S., Buchenauer L., Polte T. Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int. J. Mol. Sci. 2021;22:2269. doi: 10.3390/ijms222212269. PubMed DOI PMC

Liu N., Yang Y., Chen J., Jia H., Zhang Y., Jiang D., Wu G., Wu Z. 3-Acetyldeoxynivalenol induces lysosomal membrane permeabilization-mediated apoptosis and inhibits autophagic flux in macrophages. Environ. Pollut. 2020;265:114697. doi: 10.1016/j.envpol.2020.114697. PubMed DOI

Gao Y.N., Wang Z.W., Yang X., Wang J.Q., Zheng N. Aflatoxin M1 and ochratoxin A induce a competitive endogenous RNA regulatory network of intestinal immunosuppression by whole-transcriptome analysis. Sci. Total Environ. 2022;854:158777. doi: 10.1016/j.scitotenv.2022.158777. PubMed DOI

Cai G., Zhong F., Cao Q., Bai Y., Zou H., Gu J., Yuan Y., Zhu G., Liu Z., Bian J. ZEA and DON inhibited inflammation after L. monocytogenes infection and induced ribosomal hyperfunction. Ecotoxicol. Environ. Saf. 2022;236:113470. doi: 10.1016/j.ecoenv.2022.113470. PubMed DOI

Liu D., Wang Q., He W., Ge L., Huang K. Deoxynivalenol aggravates the immunosuppression in piglets and PAMs under the condition of PEDV infection through inhibiting TLR4/NLRP3 signaling pathway. Ecotoxicol. Environ. Saf. 2022;231:113209. doi: 10.1016/j.ecoenv.2022.113209. PubMed DOI

Xu X., Nicholson P., Ritieni A. Effects of fungal interactions among Fusarium head blight pathogens on disease development and mycotoxin accumulation. Int. J. Food Microbiol. 2007;119:67–71. doi: 10.1016/j.ijfoodmicro.2007.07.027. PubMed DOI

Antonissen G., Martel A., Pasmans F., Ducatelle R., Verbrugghe E., Vandenbroucke V., Li S., Haesebrouck F., Van Immerseel F., Croubels S. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins. 2014;6:430–452. doi: 10.3390/toxins6020430. PubMed DOI PMC

Zhou H.R., Jia Q., Pestka J.J. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicol. Sci. 2005;85:916–926. doi: 10.1093/toxsci/kfi146. PubMed DOI

Zhou H.R., Lau A.S., Pestka J.J. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci. 2003;74:335–344. doi: 10.1093/toxsci/kfg148. PubMed DOI

Sun Y., Huang K., Long M., Yang S., Zhang Y. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food Chem. Toxicol. 2022;163:112895. doi: 10.1016/j.fct.2022.112895. PubMed DOI

Liu X., Wang Z., Wang X., Yan X., He Q., Liu S., Ye M., Li X., Yuan Z., Wu J., et al. Involvement of endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway in T-2 toxin-induced apoptosis of porcine renal epithelial cells. Toxicol. Appl. Pharmacol. 2021;432:115753. doi: 10.1016/j.taap.2021.115753. PubMed DOI

Xiao Y., Wang J., Wang J., Wang H., Wu S., Bao W. Analysis of the roles of the Notch1 signalling pathway in modulating deoxynivalenol cytotoxicity. Ecotoxicol. Environ. Saf. 2022;246:114183. doi: 10.1016/j.ecoenv.2022.114183. PubMed DOI

Wu Q., Wu W., Franca T.C.C., Jacevic V., Wang X., Kuca K. Immune Evasion, a Potential Mechanism of Trichothecenes: New Insights into Negative Immune Regulations. Int. J. Mol. Sci. 2018;19:3307. doi: 10.3390/ijms19113307. PubMed DOI PMC

You L., Wang X., Wu W., Nepovimova E., Wu Q., Kuca K. HIF-1α inhibits T-2 toxin-mediated "immune evasion" process by negatively regulating PD-1/PD-L1. Toxicology. 2022;480:153324. doi: 10.1016/j.tox.2022.153324. PubMed DOI

You L., Zhao Y., Kuca K., Wang X., Oleksak P., Chrienova Z., Nepovimova E., Jaćević V., Wu Q., Wu W. Hypoxia, oxidative stress, and immune evasion: A trinity of the trichothecenes T-2 toxin and deoxynivalenol (DON) Arch. Toxicol. 2021;95:1899–1915. doi: 10.1007/s00204-021-03030-2. PubMed DOI

Wu Q., Wu W., Kuca K. From hypoxia and hypoxia-inducible factors (HIF) to oxidative stress: A new understanding of the toxic mechanism of mycotoxins. Food Chem. Toxicol. 2020;135:110968. doi: 10.1016/j.fct.2019.110968. PubMed DOI

Habrowska-Górczyńska D.E., Kowalska K., Urbanek K.A., Domińska K., Sakowicz A., Piastowska-Ciesielska A.W. Deoxynivalenol modulates the viability, ROS production and apoptosis in prostate cancer cells. Toxins. 2019;11:265. doi: 10.3390/toxins11050265. PubMed DOI PMC

Tian J., Yan J., Wang W., Zhong N., Tian L., Sun J., Min Z., Ma J., Lu S. T-2 toxin enhances catabolic activity of hypertrophic chondrocytes through ROS-NF-κB-HIF-2α pathway. Toxicol. In Vitro. 2012;26:1106–1113. doi: 10.1016/j.tiv.2012.07.002. PubMed DOI

Raghubeer S., Nagiah S., Chuturgoon A. Ochratoxin A upregulates biomarkers associated with hypoxia and transformation in human kidney cells. Toxicol. In Vitro. 2019;57:211–216. doi: 10.1016/j.tiv.2019.03.016. PubMed DOI

Pyo M.C., Choi I.G., Lee K.W. Transcriptome analysis reveals the AhR, Smad2/3, and HIF-1α pathways as the mechanism of ochratoxin A toxicity in kidney cells. Toxins. 2021;13:190. doi: 10.3390/toxins13030190. PubMed DOI PMC

Chen R., Lai U.H., Zhu L., Singh A., Ahmed M., Forsyth N.R. Reactive oxygen species formation in the brain at different oxygen levels: The role of hypoxia inducible factors. Front. Cell Dev. Biol. 2018;6:132. doi: 10.3389/fcell.2018.00132. PubMed DOI PMC

Cohn R.L., Gasek N.S., Kuchel G.A., Xu M. The heterogeneity of cellular senescence: Insights at the single-cell level. Trends Cell Biol. 2022 doi: 10.1016/j.tcb.2022.04.011. PubMed DOI PMC

Calcinotto A., Kohli J., Zagato E., Pellegrini L., Demaria M., Alimonti A. Cellular senescence: Aging, cancer, and injury. Physiol. Rev. 2019;99:1047–1078. doi: 10.1152/physrev.00020.2018. PubMed DOI

Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., et al. Cellular senescence: Defining a path forward. Cell. 2019;179:813–827. doi: 10.1016/j.cell.2019.10.005. PubMed DOI

Huang C.W., Liao W.R., How C.M., Yen P.L., Wei C.C. Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans. Environ. Pollut. 2021;285:117233. doi: 10.1016/j.envpol.2021.117233. PubMed DOI

Chao H., Ma H., Sun J., Yuan S., Dong P., Zhao A., Li L., Shen W., Zhang X. Whole-transcriptome analysis of non-coding RNA alteration in porcine alveolar macrophage exposed to aflatoxin B1. Toxins. 2022;14:373. doi: 10.3390/toxins14060373. PubMed DOI PMC

Yang X., Liu S., Huang C., Wang H., Luo Y., Xu W., Huang K. Ochratoxin A induced premature senescence in human renal proximal tubular cells. Toxicology. 2017;382:75–83. doi: 10.1016/j.tox.2017.03.009. PubMed DOI

Dubourg V., Nolze A., Kopf M., Gekle M., Schwerdt G. Weighted correlation network analysis reveals CDK2 as a regulator of a ubiquitous environmental toxin-induced cell-cycle arrest. Cells. 2020;9:143. doi: 10.3390/cells9010143. PubMed DOI PMC

Solhaug A., Holme J.A., Haglund K., Dendele B., Sergent O., Pestka J., Lagadic-Gossmann D., Eriksen G.S. Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages. Toxicol. Lett. 2013;219:8–17. doi: 10.1016/j.toxlet.2013.02.012. PubMed DOI

Solhaug A., Eriksen G.S., Holme J.A. Mechanisms of action and toxicity of the mycotoxin alternariol: A review. Basic Clin. Pharmacol. Toxicol. 2016;119:533–539. doi: 10.1111/bcpt.12635. PubMed DOI

Li H., Guan K., Zuo Z., Wang F., Peng X., Fang J., Cui H., Zhou Y., Ouyang P., Su G., et al. Effects of aflatoxin B(1) on the cell cycle distribution of splenocytes in chickens. J. Toxicol. Pathol. 2019;32:27–36. doi: 10.1293/tox.2018-0015. PubMed DOI PMC

Toso A., Revandkar A., Di Mitri D., Guccini I., Proietti M., Sarti M., Pinton S., Zhang J., Kalathur M., Civenni G., et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 2014;9:75–89. doi: 10.1016/j.celrep.2014.08.044. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...