Hypoxia and Cellular Senescence, Emerging Toxic Mechanisms of Mycotoxins and Toxins: A New Understanding of the Negative Immune Regulations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu úvodníky
PubMed
36548777
PubMed Central
PMC9787684
DOI
10.3390/toxins14120880
PII: toxins14120880
Knihovny.cz E-zdroje
- MeSH
- hypoxie MeSH
- kontaminace léku MeSH
- kontaminace potravin analýza MeSH
- lidé MeSH
- mykotoxiny * toxicita analýza MeSH
- stárnutí buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH
- Názvy látek
- mykotoxiny * MeSH
College of Life Science Yangtze University Jingzhou 434025 China
School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
Zobrazit více v PubMed
Alvito P., Pereira-da-Silva L. Mycotoxin Exposure during the First 1000 Days of Life and Its Impact on Children’s Health: A Clinical Overview. Toxins. 2022;14:189. doi: 10.3390/toxins14030189. PubMed DOI PMC
Deng Y., You L., Nepovimova E., Wang X., Musilek K., Wu Q., Wu W., Kuca K. Biomarkers of deoxynivalenol (DON) and its modified form DON-3-glucoside (DON-3G) in humans. Trends Food Sci. Technol. 2021;110:551–558. doi: 10.1016/j.tifs.2021.02.038. DOI
Kraft S., Buchenauer L., Polte T. Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int. J. Mol. Sci. 2021;22:2269. doi: 10.3390/ijms222212269. PubMed DOI PMC
Liu N., Yang Y., Chen J., Jia H., Zhang Y., Jiang D., Wu G., Wu Z. 3-Acetyldeoxynivalenol induces lysosomal membrane permeabilization-mediated apoptosis and inhibits autophagic flux in macrophages. Environ. Pollut. 2020;265:114697. doi: 10.1016/j.envpol.2020.114697. PubMed DOI
Gao Y.N., Wang Z.W., Yang X., Wang J.Q., Zheng N. Aflatoxin M1 and ochratoxin A induce a competitive endogenous RNA regulatory network of intestinal immunosuppression by whole-transcriptome analysis. Sci. Total Environ. 2022;854:158777. doi: 10.1016/j.scitotenv.2022.158777. PubMed DOI
Cai G., Zhong F., Cao Q., Bai Y., Zou H., Gu J., Yuan Y., Zhu G., Liu Z., Bian J. ZEA and DON inhibited inflammation after L. monocytogenes infection and induced ribosomal hyperfunction. Ecotoxicol. Environ. Saf. 2022;236:113470. doi: 10.1016/j.ecoenv.2022.113470. PubMed DOI
Liu D., Wang Q., He W., Ge L., Huang K. Deoxynivalenol aggravates the immunosuppression in piglets and PAMs under the condition of PEDV infection through inhibiting TLR4/NLRP3 signaling pathway. Ecotoxicol. Environ. Saf. 2022;231:113209. doi: 10.1016/j.ecoenv.2022.113209. PubMed DOI
Xu X., Nicholson P., Ritieni A. Effects of fungal interactions among Fusarium head blight pathogens on disease development and mycotoxin accumulation. Int. J. Food Microbiol. 2007;119:67–71. doi: 10.1016/j.ijfoodmicro.2007.07.027. PubMed DOI
Antonissen G., Martel A., Pasmans F., Ducatelle R., Verbrugghe E., Vandenbroucke V., Li S., Haesebrouck F., Van Immerseel F., Croubels S. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins. 2014;6:430–452. doi: 10.3390/toxins6020430. PubMed DOI PMC
Zhou H.R., Jia Q., Pestka J.J. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicol. Sci. 2005;85:916–926. doi: 10.1093/toxsci/kfi146. PubMed DOI
Zhou H.R., Lau A.S., Pestka J.J. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci. 2003;74:335–344. doi: 10.1093/toxsci/kfg148. PubMed DOI
Sun Y., Huang K., Long M., Yang S., Zhang Y. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food Chem. Toxicol. 2022;163:112895. doi: 10.1016/j.fct.2022.112895. PubMed DOI
Liu X., Wang Z., Wang X., Yan X., He Q., Liu S., Ye M., Li X., Yuan Z., Wu J., et al. Involvement of endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway in T-2 toxin-induced apoptosis of porcine renal epithelial cells. Toxicol. Appl. Pharmacol. 2021;432:115753. doi: 10.1016/j.taap.2021.115753. PubMed DOI
Xiao Y., Wang J., Wang J., Wang H., Wu S., Bao W. Analysis of the roles of the Notch1 signalling pathway in modulating deoxynivalenol cytotoxicity. Ecotoxicol. Environ. Saf. 2022;246:114183. doi: 10.1016/j.ecoenv.2022.114183. PubMed DOI
Wu Q., Wu W., Franca T.C.C., Jacevic V., Wang X., Kuca K. Immune Evasion, a Potential Mechanism of Trichothecenes: New Insights into Negative Immune Regulations. Int. J. Mol. Sci. 2018;19:3307. doi: 10.3390/ijms19113307. PubMed DOI PMC
You L., Wang X., Wu W., Nepovimova E., Wu Q., Kuca K. HIF-1α inhibits T-2 toxin-mediated "immune evasion" process by negatively regulating PD-1/PD-L1. Toxicology. 2022;480:153324. doi: 10.1016/j.tox.2022.153324. PubMed DOI
You L., Zhao Y., Kuca K., Wang X., Oleksak P., Chrienova Z., Nepovimova E., Jaćević V., Wu Q., Wu W. Hypoxia, oxidative stress, and immune evasion: A trinity of the trichothecenes T-2 toxin and deoxynivalenol (DON) Arch. Toxicol. 2021;95:1899–1915. doi: 10.1007/s00204-021-03030-2. PubMed DOI
Wu Q., Wu W., Kuca K. From hypoxia and hypoxia-inducible factors (HIF) to oxidative stress: A new understanding of the toxic mechanism of mycotoxins. Food Chem. Toxicol. 2020;135:110968. doi: 10.1016/j.fct.2019.110968. PubMed DOI
Habrowska-Górczyńska D.E., Kowalska K., Urbanek K.A., Domińska K., Sakowicz A., Piastowska-Ciesielska A.W. Deoxynivalenol modulates the viability, ROS production and apoptosis in prostate cancer cells. Toxins. 2019;11:265. doi: 10.3390/toxins11050265. PubMed DOI PMC
Tian J., Yan J., Wang W., Zhong N., Tian L., Sun J., Min Z., Ma J., Lu S. T-2 toxin enhances catabolic activity of hypertrophic chondrocytes through ROS-NF-κB-HIF-2α pathway. Toxicol. In Vitro. 2012;26:1106–1113. doi: 10.1016/j.tiv.2012.07.002. PubMed DOI
Raghubeer S., Nagiah S., Chuturgoon A. Ochratoxin A upregulates biomarkers associated with hypoxia and transformation in human kidney cells. Toxicol. In Vitro. 2019;57:211–216. doi: 10.1016/j.tiv.2019.03.016. PubMed DOI
Pyo M.C., Choi I.G., Lee K.W. Transcriptome analysis reveals the AhR, Smad2/3, and HIF-1α pathways as the mechanism of ochratoxin A toxicity in kidney cells. Toxins. 2021;13:190. doi: 10.3390/toxins13030190. PubMed DOI PMC
Chen R., Lai U.H., Zhu L., Singh A., Ahmed M., Forsyth N.R. Reactive oxygen species formation in the brain at different oxygen levels: The role of hypoxia inducible factors. Front. Cell Dev. Biol. 2018;6:132. doi: 10.3389/fcell.2018.00132. PubMed DOI PMC
Cohn R.L., Gasek N.S., Kuchel G.A., Xu M. The heterogeneity of cellular senescence: Insights at the single-cell level. Trends Cell Biol. 2022 doi: 10.1016/j.tcb.2022.04.011. PubMed DOI PMC
Calcinotto A., Kohli J., Zagato E., Pellegrini L., Demaria M., Alimonti A. Cellular senescence: Aging, cancer, and injury. Physiol. Rev. 2019;99:1047–1078. doi: 10.1152/physrev.00020.2018. PubMed DOI
Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., et al. Cellular senescence: Defining a path forward. Cell. 2019;179:813–827. doi: 10.1016/j.cell.2019.10.005. PubMed DOI
Huang C.W., Liao W.R., How C.M., Yen P.L., Wei C.C. Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans. Environ. Pollut. 2021;285:117233. doi: 10.1016/j.envpol.2021.117233. PubMed DOI
Chao H., Ma H., Sun J., Yuan S., Dong P., Zhao A., Li L., Shen W., Zhang X. Whole-transcriptome analysis of non-coding RNA alteration in porcine alveolar macrophage exposed to aflatoxin B1. Toxins. 2022;14:373. doi: 10.3390/toxins14060373. PubMed DOI PMC
Yang X., Liu S., Huang C., Wang H., Luo Y., Xu W., Huang K. Ochratoxin A induced premature senescence in human renal proximal tubular cells. Toxicology. 2017;382:75–83. doi: 10.1016/j.tox.2017.03.009. PubMed DOI
Dubourg V., Nolze A., Kopf M., Gekle M., Schwerdt G. Weighted correlation network analysis reveals CDK2 as a regulator of a ubiquitous environmental toxin-induced cell-cycle arrest. Cells. 2020;9:143. doi: 10.3390/cells9010143. PubMed DOI PMC
Solhaug A., Holme J.A., Haglund K., Dendele B., Sergent O., Pestka J., Lagadic-Gossmann D., Eriksen G.S. Alternariol induces abnormal nuclear morphology and cell cycle arrest in murine RAW 264.7 macrophages. Toxicol. Lett. 2013;219:8–17. doi: 10.1016/j.toxlet.2013.02.012. PubMed DOI
Solhaug A., Eriksen G.S., Holme J.A. Mechanisms of action and toxicity of the mycotoxin alternariol: A review. Basic Clin. Pharmacol. Toxicol. 2016;119:533–539. doi: 10.1111/bcpt.12635. PubMed DOI
Li H., Guan K., Zuo Z., Wang F., Peng X., Fang J., Cui H., Zhou Y., Ouyang P., Su G., et al. Effects of aflatoxin B(1) on the cell cycle distribution of splenocytes in chickens. J. Toxicol. Pathol. 2019;32:27–36. doi: 10.1293/tox.2018-0015. PubMed DOI PMC
Toso A., Revandkar A., Di Mitri D., Guccini I., Proietti M., Sarti M., Pinton S., Zhang J., Kalathur M., Civenni G., et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 2014;9:75–89. doi: 10.1016/j.celrep.2014.08.044. PubMed DOI