Robot-assisted vs. conventional MIDCAB: A propensity-matched analysis

. 2022 ; 9 () : 943076. [epub] 20220830

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36110419

BACKGROUND: Robotic assistance (RA) in the harvesting of internal thoracic artery during minimally invasive direct coronary artery bypass grafting (MIDCAB) provides several potential benefits for surgeon and patient in comparison with conventional MIDCAB. The two technical options have not been thoroughly compared in the literature yet. We aimed to perform this in our cohort with the use of propensity-score matching (PSM). METHODS: This was a retrospective comparison of all consecutive patients undergoing conventional MIDCAB (2005-2021) and RA-MIDCAB (2018-2021) at our institution with the use of PSM with 27 preoperative covariates. RESULTS: Throughout the study period 603 patients underwent conventional and 132 patients underwent RA-MIDCAB. One hundred and thirty matched pairs were selected for further comparison. PSM successfully eliminated all preoperative differences. Patients after RA-MIDCAB had lower 24 h blood loss post-operatively (300 vs. 450 ml, p = 0.002). They had shorter artificial ventilation time (6 vs. 7 h, p = 0.018) and hospital stay (6 vs. 8 days, p < 0.001). There was no difference in the risk of perioperative complications, short-term and mid-term mortality between the groups. CONCLUSIONS: RA-MIDCAB is an attractive alternative to conventional MIDCAB. It is associated with lower post-operative blood loss and potentially faster rehabilitation after surgery. The mortality and the risk of perioperative complications are comparable among the groups.

Zobrazit více v PubMed

Melly L, Torregrossa G, Lee T, Jansens J-L, Puskas JD. Fifty years of coronary artery bypass grafting. J Thorac Dis. (2018) 10:1960–7. 10.21037/jtd.2018.02.43 PubMed DOI PMC

Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, et al. . 2021 Acc/Aha/Scai Guideline for Coronary Artery Revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. (2022) 145:e18–14. 10.1161/CIR.0000000000001060 PubMed DOI

Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. . 2018 Esc/eacts guidelines on myocardial revascularization. Eur J Cardiothorac Surg. (2019) 55:4–90. 10.1093/ejcts/ezy289 PubMed DOI

Benetti FJ. Uso de la toracoscopeia en cirurgia coronaria para diseccion de la arteria mamaria interna. Prensa Med Argent. (1994) 81:877–9.

Raja SG, Garg S, Rochon M, Daley S, De Robertis F, Bahrami TJ. Short-term clinical outcomes and long-term survival of minimally invasive direct coronary artery bypass grafting. Ann Cardiothorac Surg. (2018) 7:621–7. 10.21037/acs.2018.06.14 PubMed DOI PMC

Davierwala PM, Verevkin A, Bergien L, von Aspern K, Deo SV, Misfeld M, et al. . Twenty-year outcomes of minimally invasive direct coronary artery bypass surgery: the leipzig experience. J Thorac Cardiovasc Surg. (2021) 10.1016/j.jtcvs.2020.12.149. [Epub ahead of print]. PubMed DOI

Repossini A, Di Bacco L, Nicoli F, Passaretti B, Stara A, Jonida B, et al. . Minimally invasive coronary artery bypass: twenty-year experience. J Thor Cardiovasc Surg. (2019) 158:127–38.e1. 10.1016/j.jtcvs.2018.11.149 PubMed DOI

Marin-Cuartas M, Sá MP, Torregrossa G, Davierwala PM. Minimally invasive coronary artery surgery: robotic and nonrobotic minimally invasive direct coronary artery bypass techniques. JTCVS Tech. (2021) 10:170–7. 10.1016/j.xjtc.2021.10.008 PubMed DOI PMC

Van den Eynde J, Vaesen Bentein H, Decaluwé T, De Praetere H, Wertan MC, Sutter FP, et al. . Safe implementation of robotic-assisted minimally invasive direct coronary artery bypass: application of learning curves and cumulative sum analysis. J Thorac Dis. (2021) 13:4260–70. 10.21037/jtd-21-775 PubMed DOI PMC

Lapierre H, Chan V, Sohmer B, Mesana TG, Ruel M. Minimally invasive coronary artery bypass grafting via a small thoracotomy versus off-pump: a case-matched study. Eur J Cardio-Thor Surg. (2011) 40:804–10. 10.1016/j.ejcts.2011.01.066 PubMed DOI

Raja SG, Benedetto U, Alkizwini E, Gupta S, Amrani M. Propensity score adjusted comparison of midcab versus full sternotomy left anterior descending artery revascularization. Innovations. (2015) 10:174–8. 10.1097/IMI.0000000000000162 PubMed DOI

Leyvi G, Forest SJ, Srinivas VS, Greenberg M, Wang N, Mais A, et al. . Robotic coronary artery bypass grafting decreases 30-day complication rate, length of stay, and acute care facility discharge rate compared with conventional surgery. Innovations. (2014) 9:361–7; discussion 7. 10.1097/imi.0000000000000095 PubMed DOI PMC

Gong W, Cai J, Wang Z, Chen A, Ye X, Li H, et al. . Robot-assisted coronary artery bypass grafting improves short-term outcomes compared with minimally invasive direct coronary artery bypass grafting. J Thorac Dis. (2016) 8:459–68. 10.21037/jtd.2016.02.67 PubMed DOI PMC

Sabashnikov A, Patil NP, Weymann A, Mohite PN, Zych B, García Sáez D, et al. . Outcomes after different non-sternotomy approaches to left single-vessel revascularization: a comparative study with up to 10-year follow-up. Eur J Cardiothorac Surg. (2014) 46:e48–55. 10.1093/ejcts/ezu287 PubMed DOI

Cerny S, Oosterlinck W, Onan B, Singh S, Segers P, Bolcal C, et al. . Robotic cardiac surgery in Europe: status 2020. Front Cardiovasc Med. (2021) 8:827515. 10.3389/fcvm.2021.827515 PubMed DOI PMC

Giambruno V, Chu MW, Fox S, Swinamer SA, Rayman R, Markova Z, et al. . Robotic-assisted coronary artery bypass surgery: an 18-year single-centre experience. Int J Med Robot. (2018) 14:e1891. 10.1002/rcs.1891 PubMed DOI

Cao C, Indraratna P, Doyle M, Tian DH, Liou K, Munkholm-Larsen S, et al. . A Systematic review on robotic coronary artery bypass graft surgery. Ann Cardiothorac Surg. (2016) 5:530–43. 10.21037/acs.2016.11.08 PubMed DOI PMC

Yang M, Wu Y, Wang G, Xiao C, Zhang H, Gao C. Robotic total arterial off-pump coronary artery bypass grafting: seven-year single-center experience and long-term follow-up of graft patency. Ann Thorac Surg. (2015) 100:1367–73. 10.1016/j.athoracsur.2015.04.054 PubMed DOI

Barbash GI, Glied SA. New technology and health care costs–the case of robot-assisted surgery. N Engl J Med. (2010) 363:701–4. 10.1056/NEJMp1006602 PubMed DOI

Morgan JA, Thornton BA, Peacock JC, Hollingsworth KW, Smith CR, Oz MC, et al. . Does robotic technology make minimally invasive cardiac surgery too expensive? A hospital cost analysis of robotic and conventional techniques. J Card Surg. (2005) 20:246–51. 10.1111/j.1540-8191.2005.200385.x PubMed DOI

Kam JK, Cooray SD, Kam JK, Smith JA, Almeida AA. A cost-analysis study of robotic versus conventional mitral valve repair. Heart Lung Circ. (2010) 19:413–8. 10.1016/j.hlc.2010.02.009 PubMed DOI

Bonatti J, Wallner S, Crailsheim I, Grabenwöger M, Winkler B. Minimally invasive and robotic coronary artery bypass grafting-a 25-year review. J Thorac Dis. (2021) 13:1922–44. 10.21037/jtd-20-1535 PubMed DOI PMC

Engelman DT, Ben Ali W, Williams JB, Perrault LP, Reddy VS, Arora RC, et al. . Guidelines for perioperative care in cardiac surgery: enhanced recovery after surgery society recommendations. JAMA Surg. (2019) 154:755–66. 10.1001/jamasurg.2019.1153 PubMed DOI

Halkos ME, Liberman HA, Devireddy C, Walker P, Finn AV, Jaber W, et al. . Early clinical and angiographic outcomes after robotic-assisted coronary artery bypass surgery. J Thorac Cardiovasc Surg. (2014) 147:179–85. 10.1016/j.jtcvs.2013.09.010 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...