Immunoglobulin secretion influences the composition of chicken caecal microbiota
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK22020066
Ministerstvo Zemědělství
QK22020066
Ministerstvo Zemědělství
QK22020066
Ministerstvo Zemědělství
QK22020066
Ministerstvo Zemědělství
QK22020066
Ministerstvo Zemědělství
QK22020066
Ministerstvo Zemědělství
PubMed
39455845
PubMed Central
PMC11512033
DOI
10.1038/s41598-024-76856-2
PII: 10.1038/s41598-024-76856-2
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika MeSH
- cékum * mikrobiologie MeSH
- imunoglobuliny * MeSH
- kur domácí * mikrobiologie imunologie MeSH
- RNA ribozomální 16S * genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobuliny * MeSH
- RNA ribozomální 16S * MeSH
The chicken caecum is colonised by hundreds of different bacterial species. Which of these are targeted by immunoglobulins and how immunoglobulin expression shapes chicken caecal microbiota has been addressed in this study. Using cell sorting followed by sequencing of V3/V4 variable region of 16S rRNA, bacterial species with increased or decreased immunoglobulin coating were determined. Next, we determined also caecal microbiota composition in immunoglobulin knockout chickens. We found that immunoglobulin coating was common and major taxa were coated with immunoglobulins. Similarly, more taxa required immunoglobulin production for caecum colonisation compared to those which became abundant in immunoglobulin-deficient chickens. Taxa with low immunoglobulin coating such as Lactobacillus, Blautia, [Eubacterium] hallii, Megamonas, Fusobacterium and Desulfovibrio all encode S-layer proteins which may reduce interactions with immunoglobulins. Although there were taxa which overgrew in Ig-deficient chickens (e.g. Akkermansia) indicating immunoglobulin production acted to exclude them from the chicken caecum, in most of the cases, immunoglobulin production more likely contributed to fixing the desired microbiota in the chicken caecum.
Center for Infection Prevention Technical University of Munich Freising Germany
Reproductive Biotechnology TUM School of Life Sciences Technical University of Munich Munich Germany
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Cheng, H. Y., Ning, M. X., Chen, D. K. & Ma, W. T. Interactions between the gut microbiota and the host innate immune response against pathogens. PubMed DOI PMC
Cullender, T. C. et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. PubMed DOI PMC
Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. PubMed DOI
Nakajima, A. et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. PubMed DOI PMC
Benjdia, A., Martens, E. C., Gordon, J. I. & Berteau, O. Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont. PubMed DOI PMC
Medvecky, M. et al. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. PubMed DOI PMC
Roediger, W. E. Utilization of nutrients by isolated epithelial cells of the rat colon. PubMed DOI
Vermeulen, K. et al. Reduced particle size wheat bran is butyrogenic and lowers Salmonella colonization, when added to poultry feed. PubMed DOI
Polansky, O. et al. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. PubMed DOI PMC
Jaglin, M. et al. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. PubMed DOI PMC
De Palma, G. et al. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. PubMed
Vlasatikova, L. et al. Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta. PubMed DOI PMC
Rengarajan, S. et al. Dynamic immunoglobulin responses to gut bacteria during inflammatory bowel disease. PubMed DOI PMC
Olm, M. R., Spencer, S. P., Silva, E. L. & Sonnenburg, J. L. Metagenomic Immunoglobulin Sequencing (MIG-Seq) Exposes patterns of IgA antibody binding in the healthy human gut microbiome.
Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. PubMed DOI PMC
Volf, J. et al. Transient and prolonged response of chicken cecum mucosa to colonization with different gut microbiota. PubMed DOI PMC
Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. PubMed DOI
Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. PubMed DOI PMC
Takeuchi, T. et al. Acetate differentially regulates IgA reactivity to commensal bacteria. PubMed DOI
Volf, J. et al. Gene expression in the chicken caecum is dependent on microbiota composition. PubMed DOI PMC
Van Immerseel, F. et al. Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a PubMed DOI
Matulova, M. et al. Characterization of chicken spleen transcriptome after infection with PubMed DOI PMC
Matulova, M. et al. Chicken innate immune response to oral infection with PubMed DOI PMC
Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. PubMed DOI PMC
Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. PubMed DOI PMC
Weis, A. M. & Round, J. L. Microbiota-antibody interactions that regulate gut homeostasis. PubMed DOI PMC
Duke, G. E., Eccleston, E., Kirkwood, S., Louis, C. F. & Bedbury, H. P. Cellulose digestion by domestic turkeys fed low or high fiber diets. PubMed DOI
Duke, G. E. Relationship of cecal and colonic motility to diet, habitat, and cecal anatomy in several avian species. PubMed DOI
Kollarcikova, M. et al. Different PubMed DOI PMC
Kollarcikova, M. et al. Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota. PubMed DOI
Schusser, B. et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. PubMed DOI PMC
Kubasova, T. et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PubMed DOI PMC
Faldynova, M. et al. Contact with adult hens affects the composition of skin and respiratory tract microbiota in newly hatched chicks. PubMed DOI PMC
Kubasova, T. et al. Gut anaerobes capable of chicken caecum colonisation. PubMed DOI PMC
Karasova, D. et al. Host species adaptation of obligate gut anaerobes is dependent on their environmental survival. PubMed DOI PMC
Kubasova, T., Seidlerova, Z. & Rychlik, I. Ecological adaptations of gut microbiota members and their consequences for use as a new generation of probiotics. PubMed DOI PMC
Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. PubMed DOI PMC
Videnska, P. et al. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PubMed DOI PMC
Stanley, D., Geier, M. S., Hughes, R. J., Denman, S. E. & Moore, R. J. Highly variable microbiota development in the chicken gastrointestinal tract. PubMed DOI PMC
Mathias, A. & Corthesy, B. Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. PubMed DOI PMC
Zeng, M. Y. et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. PubMed DOI PMC
Fransen, F. et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. PubMed DOI
Hynonen, U. & Palva, A. PubMed DOI PMC
Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and PubMed DOI PMC
Kothlow, S., Schenk-Weibhauser, K., Ratcliffe, M. J. & Kaspers, B. Prolonged effect of BAFF on chicken B cell development revealed by RCAS retroviral gene transfer in vivo. PubMed DOI
Bolyen, E. et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. PubMed DOI
Girardot, C., Scholtalbers, J., Sauer, S., Su, S. Y. & Furlong, E. E. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. PubMed DOI PMC
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. PubMed DOI PMC
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. PubMed DOI PMC
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. PubMed DOI PMC
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. PubMed DOI PMC
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. PubMed PMC