Intra-subject stability of different expressions of spatial QRS-T angle and their relationship to heart rate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36457310
PubMed Central
PMC9708109
DOI
10.3389/fphys.2022.939633
PII: 939633
Knihovny.cz E-zdroje
- Klíčová slova
- ECG measurements, healthy volunteers, heart rate, heart rate hysteresis, long-term ECG, polynomial regression, sex differences, spatial QRS-T angle,
- Publikační typ
- časopisecké články MeSH
Three-dimensional angle between the QRS complex and T wave vectors is a known powerful cardiovascular risk predictor. Nevertheless, several physiological properties of the angle are unknown or poorly understood. These include, among others, intra-subject profiles and stability of the angle relationship to heart rate, characteristics of angle/heart-rate hysteresis, and the changes of these characteristics with different modes of QRS-T angle calculation. These characteristics were investigated in long-term 12-lead Holter recordings of 523 healthy volunteers (259 females). Three different algorithmic methods for the angle computation were based on maximal vector magnitude of QRS and T wave loops, areas under the QRS complex and T wave curvatures in orthogonal leads, and weighted integration of all QRS and T wave vectors moving around the respective 3-dimensional loops. These methods were applied to orthogonal leads derived either by a uniform conversion matrix or by singular value decomposition (SVD) of the original 12-lead ECG, giving 6 possible ways of expressing the angle. Heart rate hysteresis was assessed using the exponential decay models. All these methods were used to measure the angle in 659,313 representative waveforms of individual 10-s ECG samples and in 7,350,733 individual beats contained in the same 10-s samples. With all measurement methods, the measured angles fitted second-degree polynomial regressions to the underlying heart rate. Independent of the measurement method, the angles were found significantly narrower in females (p < 0.00001) with the differences to males between 10o and 20o, suggesting that in future risk-assessment studies, different angle dichotomies are needed for both sexes. The integrative method combined with SVD leads showed the highest intra-subject reproducibility (p < 0.00001). No reproducible delay between heart rate changes and QRS-T angle changes was found. This was interpreted as a suggestion that the measurement of QRS-T angle might offer direct assessment of cardiac autonomic responsiveness at the ventricular level.
Department of Internal Medicine and Cardiology Faculty of Medicine Masaryk University Brno Czech
Department of Internal Medicine and Cardiology University Hospital Brno Brno Czech
Klinikum Rechts der Isar Technische Universität München Munich Germany
National Heart and Lung Institute Imperial College London England
Zobrazit více v PubMed
Acar B., Köymen H. (1999). SVD-based on-line exercise ECG signal orthogonalization. IEEE Trans. Biomed. Eng. 46, 311–321. 10.1109/10.748984 PubMed DOI
Acar B., Yi G., Hnatkova K., Malik M. (1999). Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Med. Biol. Eng. Comput. 37, 574–584. 10.1007/BF02513351 PubMed DOI
Andršová I., Hnatkova K., Helánová K., Šišáková M., Novotný T., Kala P., et al. (2019). Individually rate corrected QTc intervals in children and adolescents. Front. Physiol. 10, 994. 10.3389/fphys.2019.00994 PubMed DOI PMC
Andršová I., Hnatkova K., Šišáková M., Toman O., Smetana P., Huster K. M., et al. (2020). Heart rate dependency and inter-lead variability of the T peak - T end intervals. Front. Physiol. 11, 595815. 10.3389/fphys.2020.595815 PubMed DOI PMC
Andršová I., Hnatkova K., Šišáková M., Toman O., Smetana P., Huster K. M., et al. (2022). Sex and rate change differences in QT/RR hysteresis in healthy subjects. Front. Physiol. 12, 814542. 10.3389/fphys.2021.814542 PubMed DOI PMC
Augustine D. X., Howard L. (2018). Left ventricular hypertrophy in athletes: Differentiating physiology from pathology. Curr. Treat. Options Cardiovasc. Med. 20, 96. 10.1007/s11936-018-0691-2 PubMed DOI
Baumert M., Lambert G. W., Dawood T., Lambert E. A., Esler M. D., McGrane M., et al. (2008). QT interval variability and cardiac norepinephrine spillover in patients with depression and panic disorder. Am. J. Physiol. Heart Circ. Physiol. 295, H962–H968. 10.1152/ajpheart.00301.2008 PubMed DOI
Berger R. D., Kasper E. K., Baughman K. L., Marban E., Calkins H., Tomaselli G. F. (1997). Beat-to-beat QT interval variability: Novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96, 1557–1565. 10.1161/01.cir.96.5.1557 PubMed DOI
Bland J. M., Altman D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8476, 307–310. 10.1016/s0140-6736(86)90837-8 PubMed DOI
Cardoso C. R., Leite N. C., Salles G. F. (2013). Factors associated with abnormal T-wave axis and increased QRS-T angle in type 2 diabetes. Acta Diabetol. 50, 919–925. 10.1007/s00592-013-0483-9 PubMed DOI
Cortez D., Schlegel T. T., Ackerman M. J., Bos J. M. (2017). ECG-derived spatial QRS-T angle is strongly associated with hypertrophic cardiomyopathy. J. Electrocardiol. 50, 195–202. 10.1016/j.jelectrocard.2016.10.001 PubMed DOI
Cortez D., Sharma N., Cavanaugh J., Tuozo F., Derk G., Lundberg E., et al. (2017). Lower spatial QRS-T angle rules out sustained ventricular arrhythmias in children with hypertrophic cardiomyopathy. Cardiol. Young 27, 354–358. 10.1017/S1047951116000640 PubMed DOI
Cortez D., Sharma N., Devers C., Devers E., Schlegel T. T. (2014). Visual transform applications for estimating the spatial QRS-T angle from the conventional 12-lead ECG: Kors is still most Frank. J. Electrocardiol. 47, 12–19. 10.1016/j.jelectrocard.2013.09.003 PubMed DOI
Cortez D. L., Schlegel T. T. (2010). When deriving the spatial QRS-T angle from the 12-lead electrocardiogram, which transform is more Frank: Regression or inverse dower? J. Electrocardiol. 43, 302–309. 10.1016/j.jelectrocard.2010.03.010 PubMed DOI
de Bie M. K., Koopman M. G., Gaasbeek A., Dekker F. W., Maan A. C., Swenne C. A., et al. (2013). Incremental prognostic value of an abnormal baseline spatial QRS-T angle in chronic dialysis patients. Europace 15, 290–296. 10.1093/europace/eus306 PubMed DOI
de Torbal A., Kors J. A., van Herpen G., Meij S., Nelwan S., Simoons M. L., et al. (2004). The electrical T-axis and the spatial QRS-T angle are independent predictors of long-term mortality in patients admitted with acute ischemic chest pain. Cardiology 101, 199–207. 10.1159/000076697 PubMed DOI
Franz M. R., Swerdlow C. D., Liem L. B., Schaefer J. (1988). Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J. Clin. Invest. 82, 972–979. 10.1172/JCI113706 PubMed DOI PMC
Geselowitz D. B. (1983). The ventricular gradient revisited: Relation to the area under the action potential. IEEE Trans. Biomed. Eng. 30, 76–77. 10.1109/tbme.1983.325172 PubMed DOI
Gialafos E., Konstantopoulou P., Voulgari C., Giavri I., Panopoulos S., Vaiopoulos G., et al. (2012). Abnormal spatial QRS-T angle, a marker of ventricular repolarisation, predicts serious ventricular arrhythmia in systemic sclerosis. Clin. Exp. Rheumatol. 30, 327–331. PubMed
Gotsman I., Keren A., Hellman Y., Banker J., Lotan C., Zwas D. R. (2013). Usefulness of electrocardiographic frontal QRS-T angle to predict increased morbidity and mortality in patients with chronic heart failure. Am. J. Cardiol. 111, 1452–1459. 10.1016/j.amjcard.2013.01.294 PubMed DOI
Guldenring D., Finlay D. D., Strauss D. G., Galeotti L., Nugent C. D., Donnelly M. P., et al. (2012). Transformation of the mason-likar 12-lead electrocardiogram to the Frank vectorcardiogram. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 677–680. 10.1109/EMBC.2012.6346022 PubMed DOI
Guo X. H., Yi G., Batchvarov V., Gallagher M. M., Malik M. (1999). Effect of moderate physical exercise on noninvasive cardiac autonomic tests in healthy volunteers. Int. J. Cardiol. 69, 155–168. 10.1016/s0167-5273(99)00029-7 PubMed DOI
Hnatkova K., Smetana P., Toman O., Bauer A., Schmidt G., Malik M. (2009). Systematic comparisons of electrocardiographic morphology increase the precision of QT interval measurement. Pacing Clin. Electrophysiol. 32, 119–130. 10.1111/j.1540-8159.2009.02185.x PubMed DOI
Hnatkova K., Andršová I., Toman O., Smetana P., Huster K. M., Šišáková M., et al. (2021). Spatial distribution of physiologic 12-lead QRS complex. Sci. Rep. 11, 4289. 10.1038/s41598-021-83378-8 PubMed DOI PMC
Hnatkova K., Andršová I., Novotný T., Britton A., Shipley M., Vandenberk B., et al. (2022). QRS micro-fragmentation as a mortality predictor. Eur. Heart J. 2022, ehac085. In press. 10.1093/eurheartj/ehac085 PubMed DOI PMC
Hnatkova K., Seegers J., Barthel P., Novotny T., Smetana P., Zabel M., et al. (2018). Clinical value of different QRS-T angle expressions. Europace 20, 1352–1361. 10.1093/europace/eux246 PubMed DOI PMC
Hnatkova K., Šišáková M., Smetana P., Toman O., Huster K. M., Novotný T., et al. (2019). Sex differences in heart rate responses to postural provocations. Int. J. Cardiol. 297, 126–134. 10.1016/j.ijcard.2019.09.044 PubMed DOI PMC
Hnatkova K., Toman O., Sisakova M., Novotny T., Malik M. (2010). Dynamic properties of selected repolarization descriptors. J. Electrocardiol. 43, 588–594. 10.1016/j.jelectrocard.2010.06.003 PubMed DOI
Hume R. (1966). Prediction of lean body mass from height and weight. J. Clin. Pathol. 19, 389–391. 10.1136/jcp.19.4.389 PubMed DOI PMC
ICH Guideline (2001). Safety pharmacology studies for human pharmaceuticals S7A. Fed. Regist. 66, 36791–36792. PubMed
Jensen C. J., Lambers M., Zadeh B., Wambach J. M., Nassenstein K., Bruder O. (2021). QRS-T angle in patients with hypertrophic cardiomyopathy - a comparison with cardiac magnetic resonance imaging. Int. J. Med. Sci. 18, 821–825. 10.7150/ijms.52415 PubMed DOI PMC
Kardys I., Kors J. A., van der Meer I. M., Hofman A., van der Kuip D. A., Witteman J. C. (2003). Spatial QRS-T angle predicts cardiac death in a general population. Eur. Heart J. 24, 1357–1364. 10.1016/s0195-668x(03)00203-3 PubMed DOI
Kenttä T., Karsikas M., Kiviniemi A., Tulppo M., Seppänen T., Huikuri H. V. (2010). Dynamics and rate-dependence of the spatial angle between ventricular depolarization and repolarization wave fronts during exercise ECG. Ann. Noninvasive Electrocardiol. 15, 264–275. 10.1111/j.1542-474X.2010.00374.x PubMed DOI PMC
Kors J. A., Kardys I., van der Meer I. M., van Herpen G., Hofman A., van der Kuip D. A., et al. (2003). Spatial QRS-T angle as a risk indicator of cardiac death in an elderly population. J. Electrocardiol. 36 (1), 113–114. 10.1016/j.jelectrocard.2003.09.033 PubMed DOI
Lau C. P., Freeman A. R., Fleming S. J., Malik M., Camm A. J., Ward D. E. (1988). Hysteresis of the ventricular paced QT interval in response to abrupt changes in pacing rate. Cardiovasc. Res. 22, 67–72. 10.1093/cvr/22.1.67 PubMed DOI
Li S. N., Zhang X. L., Cai G. L., Lin R. W., Jiang H., Chen J. Z., et al. (2016). Prognostic significance of frontal QRS-T angle in patients with idiopathic dilated cardiomyopathy. Chin. Med. J. 129, 1904–1911. 10.4103/0366-6999.187844 PubMed DOI PMC
Linde C., Bongiorni M. G., Birgersdotter-Green U., Curtis A. B., Deisenhofer I., Furokawa T., et al. (2018). Sex differences in cardiac arrhythmia: A consensus document of the European heart rhythm association, endorsed by the heart rhythm society and asia pacific heart rhythm society. Europace 20, 1565. 10.1093/europace/euy067 PubMed DOI
Lown M. T., Munyombwe T., Harrison W., West R. M., Hall C. A., Morrell C., et al. (2012). Association of frontal QRS-T angle--age risk score on admission electrocardiogram with mortality in patients admitted with an acute coronary syndrome. Am. J. Cardiol. 109, 307–313. 10.1016/j.amjcard.2011.09.014 PubMed DOI
MacDonald E. A., Rose R. A., Quinn T. A. (2020). Neurohumoral control of sinoatrial node activity and heart rate: Insight from experimental models and findings from humans. Front. Physiol. 11, 170. 10.3389/fphys.2020.00170 PubMed DOI PMC
Macfarlane P. W., Lawrie T. D. V. (1989). Comprehensive electrocardiology. New York, Oxford, Beijing, Frankfurt, São Paulo, Sydney, Tokyo, Toronto: Pergamon Press.
Macfarlane P. W. (2020). “Morphology of normal resting electrocardiogram,” in Sex and cardiac electrophysiology. Editor Malik M. (London: Elsevier; ), 63–72.
Malik M., Andreas J-O., Hnatkova K., Hoeckendorff J., Cawello W., Middle M., et al. (2008). Thorough QT/QTc Study in patients with advanced Parkinson's disease: Cardiac safety of rotigotine. Clin. Pharmacol. Ther. 84, 595–603. 10.1038/clpt.2008.143 PubMed DOI
Malik M. (2008). Beat-to-beat QT variability and cardiac autonomic regulation. Am. J. Physiol. Heart Circ. Physiol. 295, H923–H925. 10.1152/ajpheart.00709.2008 PubMed DOI
Malik M., Camm A. J. (1990). Heart rate variability. Clin. Cardiol. 13, 570–576. 10.1002/clc.4960130811 PubMed DOI
Malik M. (2004). Errors and misconceptions in ECG measurement used for the detection of drug induced QT interval prolongation. J. Electrocardiol. 37 (1), 25–33. 10.1016/j.jelectrocard.2004.08.005 PubMed DOI
Malik M., Hnatkova K., Batchvarov V. N. (2004). Post infarction risk stratification using the 3-D angle between QRS complex and T-wave vectors. J. Electrocardiol. 37 (1), 201–208. 10.1016/j.jelectrocard.2004.08.058 PubMed DOI
Malik M., Hnatkova K., Huikuri H. V., Lombardi F., Schmidt G., Zabel M. (2019). CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsiveness. J. Physiol. 597, 2595–2598. 10.1113/JP277500 PubMed DOI PMC
Malik M., Hnatkova K., Novotny T., Schmidt G. (2008). Subject-specific profiles of QT/RR hysteresis. Am. J. Physiol. Heart Circ. Physiol. 295, H2356–H2363. 10.1152/ajpheart.00625.2008 PubMed DOI
Malik M., Johannesen L., Hnatkova K., Stockbridge N. (2016). Universal correction for QT/RR hysteresis. Drug Saf. 39, 577–588. 10.1007/s40264-016-0406-0 PubMed DOI
Malik M., Kulakowski P., Poloniecki J., Staunton A., Odemuyiwa O., Farrell T., et al. (1992). Frequency versus time domain analysis of signal-averaged electrocardiograms. I. Reproducibility of the results. J. Am. Coll. Cardiol. 20, 127–134. 10.1016/0735-1097(92)90148-g PubMed DOI
Malik M., van Gelderen E. M., Lee J. H., Kowalski D. L., Yen M., Goldwater R., et al. (2012). Proarrhythmic safety of repeat doses of mirabegron in healthy subjects: A randomized, double-blind, placebo-and active-controlled thorough QT study. Clin. Pharmacol. Ther. 92, 696–706. 10.1038/clpt.2012.181 PubMed DOI
May O., Graversen C. B., Johansen M. Ø., Arildsen H. (2017). A large frontal QRS-T angle is a strong predictor of the long-term risk of myocardial infarction and all-cause mortality in the diabetic population. J. Diabetes Complicat. 31, 551–555. 10.1016/j.jdiacomp.2016.12.001 PubMed DOI
May O., Graversen C. B., Johansen M. Ø., Arildsen H. (2018). The prognostic value of the frontal QRS-T angle is comparable to cardiovascular autonomic neuropathy regarding long-term mortality in people with diabetes. A population based study. Diabetes Res. Clin. Pract. 142, 264–268. 10.1016/j.diabres.2018.05.018 PubMed DOI
Oehler A., Feldman T., Henrikson C. A., Tereshchenko L. G. (2014). QRS-T angle: A review. Ann. Noninvasive Electrocardiol. 19, 534–542. 10.1111/anec.12206 PubMed DOI PMC
Pomeranz B., Macaulay R. J. B., Caudill M. A., Kutz I., Adam D., Gordon D., et al. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 248, H151–H153. 10.1152/ajpheart.1985.248.1.H151 PubMed DOI
Poulikakos D., Hnatkova K., Banerjee D., Malik M. (2018). Association of QRS-T angle and heart rate variability with major cardiac events and mortality in hemodialysis patients. Ann. Noninvasive Electrocardiol. 23, e12570. 10.1111/anec.12570 PubMed DOI PMC
Puglisi J. L., Negroni J. A., Chen-Izu Y., Bers D. M. (2013). The force-frequency relationship: Insights from mathematical modeling. Adv. Physiol. Educ. 37, 28–34. 10.1152/advan.00072.2011 PubMed DOI PMC
Rautaharju P. M., Prineas R. J., Zhang Z. M. (2007). A simple procedure for estimation of the spatial QRS/T angle from the standard 12-lead electrocardiogram. J. Electrocardiol. 40, 300–304. 10.1016/j.jelectrocard.2006.11.003 PubMed DOI
Schreurs C. A., Algra A. M., Man S. C., Cannegieter S. C., van der Wall E. E., Schalij M. J., et al. (2010). The spatial QRS-T angle in the Frank vectorcardiogram: Accuracy of estimates derived from the 12-lead electrocardiogram. J. Electrocardiol. 43, 294–301. 10.1016/j.jelectrocard.2010.03.009 PubMed DOI
Selvaraj S., Ilkhanoff L., Burke M. A., Freed B. H., Lang R. M., Martinez E. E., et al. (2014). Association of the frontal QRS-T angle with adverse cardiac remodeling, impaired left and right ventricular function, and worse outcomes in heart failure with preserved ejection fraction. J. Am. Soc. Echocardiogr. 27, 74–82. 10.1016/j.echo.2013.08.023 PubMed DOI PMC
Smetana P., Batchvarov V. N., Hnatkova K., Camm A. J., Malik M. (2004). Ventricular gradient and nondipolar repolarization components increase at higher heart rate. Am. J. Physiol. Heart Circ. Physiol. 286, H131–H136. 10.1152/ajpheart.00479.2003 PubMed DOI
Sweda R., Sabti Z., Strebel I., Kozhuharov N., Wussler D., Shrestha S., et al. (2020). Diagnostic and prognostic values of the QRS-T angle in patients with suspected acute decompensated heart failure. Esc. Heart Fail. 7, 1817–1829. 10.1002/ehf2.12746 PubMed DOI PMC
Task Force E. S. C/N. A. S. P. E. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 93, 1043–1065. 10.1161/01.cir.93.5.1043 PubMed DOI
Toman O., Hnatkova K., Šišáková M., Smetana P., Huster K. M., Barthel P., et al. (2022). Short-term beat-to-beat QT variability appears influenced more strongly by recording quality than by beat-to-beat RR variability. Front. Physiol. 13, 863873. 10.3389/fphys.2022.863873 PubMed DOI PMC
Valenza G., Citi L., Saul J. P., Barbieri R. (2018). Measures of sympathetic and parasympathetic autonomic outflow from heartbeat dynamics. J. Appl. Physiol. 125, 19–39. 10.1152/japplphysiol.00842.2017 PubMed DOI
van Oosterom A. (2014). The case of the QRS-T angles versus QRST integral maps. J. Electrocardiol. 47, 144–150. 10.1016/j.jelectrocard.2013.10.006 PubMed DOI
Voulgari C., Moyssakis I., Perrea D., Kyriaki D., Katsilambros N., Tentolouris N. (2010). The association between the spatial QRS-T angle with cardiac autonomic neuropathy in subjects with Type 2 diabetes mellitus. Diabet. Med. 27, 1420–1429. 10.1111/j.1464-5491.2010.03120.x PubMed DOI
Walsh J. A., 3rd, Soliman E. Z., Ilkhanoff L., Ning H., Liu K., Nazarian S., et al. (2013). Prognostic value of frontal QRS-T angle in patients without clinical evidence of cardiovascular disease (from the Multi-Ethnic Study of Atherosclerosis). Am. J. Cardiol. 112, 1880–1884. 10.1016/j.amjcard.2013.08.017 PubMed DOI PMC
Wilson F. N., Macleod A. G., Barker P. S., Johnston F. D. (1934). The determination and the significance of the areas of the ventricular deflections of the electrocardiogram. Am. Heart J. 10, 46–61. 10.1016/s0002-8703(34)90303-3 DOI
Xue J. Q. (2009). Robust QT interval estimation - from algorithm to validation. Ann. Noninvasive Electrocardiol. 14 (1), S35–S41. 10.1111/j.1542-474X.2008.00264.x PubMed DOI PMC
Yamazaki T., Froelicher V. F., Myers J., Chun S., Wang P. (2005). Spatial QRS-T angle predicts cardiac death in a clinical population. Heart rhythm. 2, 73–78. 10.1016/j.hrthm.2004.10.040 PubMed DOI
Yana K., Shichiku H., Satoh T., Mizuta H., Ono T. (2006). An improved QT interval measurement based on singular value decomposition. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 3990–3993. 10.1109/IEMBS.2006.259959 PubMed DOI
Zabel M., Acar B., Klingenheben T., Franz M. R., Hohnloser S. H., Malik M. (2000). Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation 102, 1252–1257. 10.1161/01.cir.102.11.1252 PubMed DOI
Zabel M., Malik M. (2001). Predictive value of T-wave morphology variables and QT dispersion for postmyocardial infarction risk assessment. J. Electrocardiol. 34 (1), 27–35. 10.1054/jelc.2001.28822 PubMed DOI
Zaglia T., Mongillo M. (2017). Cardiac sympathetic innervation, from a different point of (re)view. J. Physiol. 595, 3919–3930. 10.1113/JP273120 PubMed DOI PMC
Zampa H. B., Moreira D. A., Ferreira Filho C. A., Souza C. R., Menezes C. C., Hirata H. S., et al. (2014). Value of the Qrs-T angle in predicting the induction of ventricular tachyarrhythmias in patients with Chagas disease. Arq. Bras. Cardiol. 103, 460–467. 10.5935/abc.20140162 PubMed DOI PMC