Sex differences in heart rate responses to postural provocations
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
NH/16/2/32499
British Heart Foundation - United Kingdom
PubMed
31611089
PubMed Central
PMC6926477
DOI
10.1016/j.ijcard.2019.09.044
PII: S0167-5273(19)33952-X
Knihovny.cz E-zdroje
- Klíčová slova
- Autonomic modulations, Autonomic responsiveness, Heart rate, Heart rate variability, Postural changes, Responses to stress, Sex differences,
- MeSH
- autonomní nervový systém fyziologie MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- postura těla fyziologie MeSH
- referenční hodnoty MeSH
- sexuální faktory MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Sex differences are known in several facets of cardiac electrophysiology, mostly concerning myocardial repolarisation. In this study, heart rate and heart rate variability (HRV) responses to postural provocations were compared in 175 and 176 healthy females and males, respectively (aged 33.1 ± 9.1 years). Two different postural provocative tests with position changes supine→sitting→standing→supine and supine→standing→sitting→supine (15-min standing, 10-min other positions) were performed up to 4 times in each subject. Heart rate and heart rate variability spectral indices were measured in 5-min windows before positional changes. At supine position, females had averaged heart rate approximately 5 beats per minute (bpm) faster than males and this sex difference was practically constant during the postural changes. In both sexes, change supine→sitting and supine→standing increased heart rate by approximately 10 and 30 bpm, respectively, with no statistical differences between the sex groups. At supine baseline, females had normalised high frequency components (nHF) of HRV approximately 7% larger compared to males (p < 0.001). While the same difference in nHF was found at sitting, the change to standing position lead to significantly larger nHF reduction in females compared to males (mean changes 22.5 vs 17.2%, p < 0.001). This shows that despite similar heart rate increase, females respond to standing by more substantial shifts in cardiac sympatho-vagal modulations. This makes it plausible to speculate that the differences in autonomic reactions to stress contribute to the known sex-differences in psychosocial responses to stressful situations and to the known difference in susceptibility to ventricular fibrillation between females and males.
Klinikum rechts der Isar Technische Universität München Ismaninger Straße 22 D 81675 Munich Germany
Wilhelminenspital der Stadt Wien Montleartstraße 37 1160 Vienna Austria
Zobrazit více v PubMed
Styles K., Sapp J., Jr., Gardner M., Gray C., Abdelwahab A., MacIntyre C., Gao D., Al-Harbi M., Doucette S., Theriault C., Parkash R. The influence of sex and age on ventricular arrhythmia in a population-based registry. Int. J. Cardiol. 2017;244:169–174. PubMed
Chorin E., Hochstadt A., Viskin S., Rozovski U., Havakuk O., Baranchuk A., Enriquez A., Strasberg B., Guevara-Valdivia M.E., Márquez M.F., González-Pacheco H., Hasdemir C., Rosso R. Female gender as independent risk factor of torsades de pointes during acquired atrioventricular block. Heart Rhythm. 2017;14:90–95. PubMed
Stramba-Badiale M., Spagnolo D., Bosi G., Schwartz P.J. Are gender differences in QTc present at birth? MISNES investigators. Multicenter Italian study on neonatal electrocardiography and sudden infant death syndrome. Am. J. Cardiol. 1995;75:1277–1278. PubMed
Stramba-Badiale M., Locati E.H., Martinelli A., Courville J., Schwartz P.J. Gender and the relationship between ventricular repolarization and cardiac cycle length during 24-h Holter recordings. Eur. Heart J. 1997;18:1000–1006. PubMed
Zareba W., Moss A.J., Locati E.H., Lehmann M.H., Peterson D.R., Hall W.J., Schwartz P.J., Vincent G.M., Priori S.G., Benhorin J., Towbin J.A., Robinson J.L., Andrews M.L., Napolitano C., Timothy K., Zhang L., Medina A. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J. Am. Coll. Cardiol. 2003;42:103–109. PubMed
Hohnloser S.H., Klingenheben T., van de Loo A., Hablawetz E., Just H., Schwartz P.J. Reflex versus tonic vagal activity as a prognostic parameter in patients with sustained ventricular tachycardia or ventricular fibrillation. Circulation. 1994;89:1068–1073. PubMed
Porta A., Girardengo G., Bari V., George A.L., Jr., Brink P.A., Goosen A., Crotti L., Schwartz P.J. Autonomic control of heart rate and QT interval variability influences arrhythmic risk in long QT syndrome type 1. J. Am. Coll. Cardiol. 2015;65:367–374. PubMed PMC
Britton A., Shipley M., Malik M., Hnatkova K., Hemingway H., Marmot M. Changes in heart rate and heart rate variability over time in middle-aged men and women in the general population (from the Whitehall II Cohort Study) Am. J. Cardiol. 2007;100:524–527. PubMed PMC
Huikuri H.V., Pikkujämsä S.M., Airaksinen K.E., Ikäheimo M.J., Rantala A.O., Kauma H., Lilja M., Kesäniemi Y.A. Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation. 1996;94:122–125. PubMed
Kuch B., Hense H.W., Sinnreich R., Kark J.D., von Eckardstein A., Sapoznikov D., Bolte H.D. Determinants of short-period heart rate variability in the general population. Cardiology. 2001;95:131–138. PubMed
Yamasaki Y., Kodama M., Matsuhisa M., Kishimoto M., Ozaki H., Tani A., Ueda N., Ishida Y., Kamada T. Diurnal heart rate variability in healthy subjects: effects of aging and sex difference. Am. J. Physiol. 1996;271:H303–H310. PubMed
Evans J.M., Ziegler M.G., Patwardhan A.R., Ott J.B., Kim C.S., Leonelli F.M., Knapp C.F. Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes. J. Appl. Physiol. 2001;91:2611–2618. PubMed
Schwartz P.J., Zaza A., Locati E., Moss A.J. Stress and sudden death. The case of the long QT syndrome. Circulation. 1991;83(Suppl II):71–80. PubMed
ICH Guideline Safety pharmacology studies for human pharmaceuticals S7A. Fed. Regist. 2001;66:36791–36792. PubMed
Malik M., Andreas J.O., Hnatkova K., Hoeckendorff J., Cawello W., Middle M., Horstmann R., Braun M. Thorough QT/QTc study in patients with advanced Parkinson’s disease: cardiac safety of rotigotine. Clin. Pharmacol. Ther. 2008;84:595–603. PubMed
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology Heart rate variability - standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–1065. PubMed
Pomeranz B., Macaulay R.J.B., Caudill M.A., Kutz I., Adam D., Gordon D., Kilborn K.M., Barger A.C., Shannon D.C., Cohen R.J., Benson H. Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 1985;248:H151–H153. PubMed
Malik M., Hnatkova K., Huikuri H., Lombardi F., Schmidt G., Zabel M. CrossTalk proposal: heart rate variability is a valid measure of cardiac autonomic responsiveness. J. Physiol. 2019;597:2595–2598. PubMed PMC
Malik M., Hnatkova K., Huikuri H., Lombardi F., Schmidt G., Zabel M. CrossTalk rebuttal. J. Physiol. 2019;597:2603–2604. PubMed PMC
Jansen A.S., Nguyen X.V., Karpitskiy V., Mettenleiter T.C., Loewy A.D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science. 1995;270:644–646. PubMed
Taylor S.E., Klein L.C., Lewis B.P., Gruenewald T.L., Gurung R.A., Updegraff J.A. Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychol. Rev. 2000;107:411–429. PubMed
von Dawans B., Ditzen B., Trueg A., Fischbacher U., Heinrichs M. Effects of acute stress on social behavior in women. Psychoneuroendocrinology. 2019;99:137–144. PubMed
Tifferet S., Manor O., Constantini S., Friedman O., Elizur Y. Sex differences in parental reaction to pediatric illness. J. Child Health Care. 2011;15:118–125. PubMed
Lowry R., Powell K.E., Kann L., Collins J.L., Kolbe L.J. Weapon-carrying, physical fighting, and fight-related injury among U.S. adolescents. Am. J. Prev. Med. 1998;14:122–129. PubMed
Schnitzer S., Bellis M.A., Anderson Z., Hughes K., Calafat A., Juan M., Kokkevi A. Nightlife violence: a gender-specific view on risk factors for violence in nightlife settings: a cross-sectional study in nine European countries. J. Interpers Violence. 2010;25:1094–1112. PubMed
Stramba-Badiale M., Lazzarotti M., Facchini M., Schwartz P.J. Malignant arrhythmias and acute myocardial ischemia: interaction between flecainide and the autonomic nervous system. Am. Heart J. 1994;128:973–982. PubMed
Linde C., Bongiorni M.G., Birgersdotter-Green U., Curtis A.B., Deisenhofer I., Furokawa T., Gillis A.M., Haugaa K.H., Lip G.Y.H., Van Gelder I., Malik M., Poole J., Potpara T., Savelieva I., Sarkozy A. Sex differences in cardiac arrhythmia: a consensus document of the european heart rhythm association, endorsed by the heart rhythm society and asia pacific heart rhythm society. Europace. 2018;20:1565. 1565ao. PubMed
Wellens H.J., Schwartz P.J., Lindemans F.W., Buxton A.E., Goldberger J.J., Hohnloser S.H., Huikuri H.V., Kääb S., La Rovere M.T., Malik M., Myerburg R.J., Simoons M.L., Swedberg K., Tijssen J., Voors A.A., Wilde A.A. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur. Heart J. 2014;35:1642–1651. PubMed PMC
Schwartz P.J., Priori S.G., Spazzolini C., Moss A.J., Vincent G.M., Napolitano C., Denjoy I., Guicheney P., Breithardt G., Keating M.T., Towbin J.A., Beggs A.H., Brink P., Wilde A.A., Toivonen L., Zareba W., Robinson J.L., Timothy K.W., Corfield V., Wattanasirichaigoon D., Corbett C., Haverkamp W., Schulze-Bahr E., Lehmann M.H., Schwartz K., Coumel P., Bloise R. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103:89–95. PubMed
Hansen C.S., Færch K., Jørgensen M.E., Malik M., Witte D.R., Brunner E.J., Tabák A.G., Kivimäki M., Vistisen D. Heart rate, autonomic function, and future changes in glucose metabolism in individuals without diabetes: the Whitehall II cohort study. Diabetes Care. 2019;42:867–874. PubMed PMC
Andršová I., Hnatkova K., Helánová K., Šišáková M., Novotný T., Kala P., Malik M. Individually rate corrected QTc intervals in children and adolescents. Front. Physiol. 2019;10:994. PubMed PMC
Reardon M., Malik M. Changes in heart rate variability with age. Pacing Clin. Electrophysiol. 1996;19:1863–1866. PubMed
Sato N., Miyake S., Akatsu J., Kumashiro M. Power spectral analysis of heart rate variability in healthy young women during the normal menstrual cycle. Psychosom. Med. 1995;57:331–335. PubMed
Leicht A.S., Hirning D.A., Allen G.D. Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. Exp. Physiol. 2003;88:441–446. PubMed
McCrory C., Berkman L.F., Nolan H., O’Leary N., Foley M., Kenny R.A. Speed of heart rate recovery in response to orthostatic challenge. Circ. Res. 2016;119:666–675. PubMed
Sassi R., Cerutti S., Lombardi F., Malik M., Huikuri H.V., Peng C.K., Schmidt G., Yamamoto Y. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17:1341–1353. PubMed
Development of autonomic heart rate modulations during childhood and adolescence
Speed of heart rate changes during postural provocations in children and adolescents
Sex and Rate Change Differences in QT/RR Hysteresis in Healthy Subjects
Heart Rate Influence on the QT Variability Risk Factors