Stress and Rest Pulmonary Transit Times Assessed by Cardiovascular Magnetic Resonance
Language English Country United States Media print-electronic
Document type Review, Journal Article
PubMed
36728820
PubMed Central
PMC10994187
DOI
10.1097/crd.0000000000000495
PII: 00045415-202405000-00006
Knihovny.cz E-resources
- MeSH
- Contrast Media MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Magnetic Resonance Imaging * methods MeSH
- Pulmonary Circulation physiology MeSH
- Predictive Value of Tests MeSH
- Heart * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Contrast Media MeSH
Acquiring pulmonary circulation parameters as a potential marker of cardiopulmonary function is not new. Methods to obtain these parameters have been developed over time, with the latest being first-pass perfusion sequences in cardiovascular magnetic resonance (CMR). Even though more data on these parameters has been recently published, different nomenclature and acquisition methods are used across studies; some works even reported conflicting data. The most commonly used circulation parameters obtained using CMR include pulmonary transit time (PTT) and pulmonary transit beats (PTB). PTT is the time needed for a contrast agent (typically gadolinium-based) to circulate from the right ventricle (RV) to the left ventricle (LV). PTB is the number of cardiac cycles the process takes. Some authors also include corrected heart rate (HR) versions along with standard PTT. Besides other methods, CMR offers an option to assess stress circulation parameters, but data are minimal. This review aims to summarize the up-to-date findings and provide an overview of the latest progress on this promising, dynamically evolving topic.
See more in PubMed
Harvey W. Exercitatio anatomica de motu cordis et sanguinis in animalibus, A. Spizelius opera quae extant omnia. Springfield, Ill; 1645.
Hering E. Ztschr. f. Physiol. 3, 85 (1827) as quoted by Tigerstedt, R in Die Physiologie des Kreislaufs. Vereinigung Wissensachaftlicher Verleger Walter de Gruyter; 1921.
Vierordt KV. Die Erscheinungen und Gesetze der Stromgeschwindigkeiten des Blutes. Meidinger; 1858.
Koch E. Die Bestimmung des Kreislaufzeit des Blutes, Urban und Schwarzenberg. Berlin; 1935.
Blumgart HL, Weiss S. Studies on the velocity of blood flow: VII. The pulmonary circulation time in normal resting individuals. J Clin Invest. 1927;4:399–425. PubMed PMC
Slutsky RA, Bhargava V, Higgins CB. Pulmonary circulation time: comparison of mean, median, peak, and onset (appearance) values using indocyanine green and first-transit radionuclide techniques. Am Heart J. 1983;106(1, Part 1):41–45. PubMed
Jones RH, Sabiston DC, Bates BB, et al. . Quantitative radionuclide angiocardiography for determination of chamber to chamber cardiac transit times. Am J Cardiol. 1972;30:855–864. PubMed
Colin GC, Pouleur A-C, Gerber BL, et al. . Pulmonary hypertension detection by computed tomography pulmonary transit time in heart failure with reduced ejection fraction. Eur Heart J Cardiovasc Imaging. 2019;21:1291–1298. PubMed
Zhao H, Tsauo J, Zhang X, et al. . Pulmonary transit time derived from pulmonary angiography for the diagnosis of hepatopulmonary syndrome. Liver Int. 2018;38:1974–1981. PubMed
de Lepper AGW, Herold IHF, Saporito S, et al. . Noninvasive pulmonary transit time: A new parameter for general cardiac performance. Echocardiogr. 2017;34:1138–1145. PubMed
Herold IHF, Soliman Hamad MA, van Assen HC, et al. . Pulmonary blood volume measured by contrast enhanced ultrasound: a comparison with transpulmonary thermodilution. Br J Anaesth. 2015;115:53–60. PubMed
Shors SM, Cotts WG, Pavlovic-Surjancev B, et al. . Heart failure: evaluation of cardiopulmonary transit times with time-resolved MR angiography. Radiology. 2003;229:743–748. PubMed
Skrok J, Shehata ML, Mathai S, et al. . Pulmonary arterial hypertension: MR imaging-derived first-pass bolus kinetic parameters are biomarkers for pulmonary hemodynamics, cardiac function, and ventricular remodeling. Radiology. 2012;263:678–687. PubMed PMC
Cao JJ, Li L, McLaughlin J, et al. . Prolonged central circulation transit time in patients with HFpEF and HFrEF by magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2017;19:339–346. PubMed
Houard L, Amzulescu MS, Colin G, et al. . Prognostic value of pulmonary transit time by cardiac magnetic resonance on mortality and heart failure hospitalization in patients with advanced heart failure and reduced ejection fraction. Circ Cardiovasc Imaging. 2021;14:e011680. PubMed
Seraphim A, Knott KD, Menacho K, et al. . Prognostic value of pulmonary transit time and pulmonary blood volume estimation using myocardial perfusion CMR. JACC Cardiovasc Imaging. 2021;14:2107–2119. PubMed PMC
Opatřil L, Panovsky R, Mojica-Pisciotti M, et al. . Stress pulmonary circulation parameters assessed by a cardiovascular magnetic resonance in patients after a heart transplant. Sci Rep. 2022;12:6130–6130. PubMed PMC
McLaughlin VV, Archer SL, Badesch DB, et al. . ACCF/AHA 2009 expert consensus document on pulmonary hypertension. Circulation. 2009;119:2250–2294. PubMed
Delgado JF. The pulmonary circulation in heart failure. Revista Española de Cardiología (English Edition). Rev Esp Cardiol. 2010;63:334–345. PubMed
Thompson RB, Chow K, Pagano JJ, et al. . Quantification of lung water in heart failure using cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson. 2019;21:58. PubMed PMC
Hayes CE, Case TA, Ailion DC, et al. . Lung water quantitation by nuclear magnetic resonance imaging. Science (New York, N.Y.). 1982;216:1313–1315. PubMed
Ricci F, Barison A, Todiere G, et al. . Prognostic value of pulmonary blood volume by first-pass contrast-enhanced CMR in heart failure outpatients: the PROVE-HF study. Eur Heart J Cardiovasc Imaging. 2018;19:896–904. PubMed
Ricci F, Aung N, Thomson R, et al. . Pulmonary blood volume index as a quantitative biomarker of haemodynamic congestion in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2019;20:1368–1376. PubMed PMC
Wymer DT, Patel KP, Burke WF, 3rd, et al. . Phase-contrast MRI: physics, techniques, and clinical applications. Radiographics. 2020;40:122–140. PubMed
Bradlow WM, Gibbs JSR, Mohiaddin RH. Cardiovascular magnetic resonance in pulmonary hypertension. J Cardiovasc Magn Reson. 2012;14:6. PubMed PMC
Ugander M, Kanski M, Engblom H, et al. . Pulmonary blood volume variation decreases after myocardial infarction in pigs: a quantitative and noninvasive MR imaging measure of heart failure. Radiology. 2010;256:415–423. PubMed
Grodins FS. Basic concepts in the determination of vascular volumes by indicator-dilution methods. Circ Res. 1962;10:429–446. PubMed
Nelsson A, Kanski M, Engblom H, et al. . Pulmonary blood volume measured by cardiovascular magnetic resonance: influence of pulmonary transit time methods and left atrial volume. J Cardiovasc Magn Reson. 2021;23:123. PubMed PMC
Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–370.
Rabkin SW, Cheng XB. Nomenclature, categorization and usage of formulae to adjust QT interval for heart rate. World J Cardiol. 2015;7:315–325. PubMed PMC
Andršová I, Hnatkova K, Šišáková M, et al. . Influence of heart rate correction formulas on QTc interval stability. Sci Rep. 2021;11:14269. PubMed PMC
Qutayba H, Shannon J, Martin J. Physiological Basis of Respiratory Disease. McGraw-Hill Education; 2005.
Fredholm BB, Arslan G, Halldner L, et al. . Structure and function of adenosine receptors and their genes. Naunyn-Schmiedeberg’s Arch Pharmacol. 2000;362:364–374. PubMed
Poulsen S-A, Quinn RJ. Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem. 1998;6:619–641. PubMed
Klotz K-N. Adenosine receptors and their ligands. Naunyn-Schmiedeberg’s Arch Pharmacol. 2000;362:382–391. PubMed
Hori M, Kitakaze M. Adenosine, the heart, and coronary circulation. Hypertension. 1991;18:565–574. PubMed
Wilson RF, Wyche K, Christensen BV, et al. . Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82:1595–1606. PubMed
Salerno M, Taylor A, Yang Y, et al. . Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease. Circ Cardiovasc Imaging. 2014;7:639–646. PubMed PMC
Monahan TS, Sawmiller DR, Fenton RA, et al. . Adenosine A2a-receptor activation increases contractility in isolated perfused hearts. Am J Physiol Heart Circ Physiol. 2000;279:H1472–H1481. PubMed
Costa MA, Matsumoto JPP, Carrettiero DC, et al. . Adenosine A1 and A2a receptors modulate the nitrergic system in cell culture from dorsomedial medulla oblongata. Auton Neurosci. 2020;229:102737. PubMed
Tian L, Tang G, Liu Q, et al. . Blockade of adenosine A1 receptor in nucleus tractus solitarius attenuates baroreflex sensitivity response to dexmedetomidine in rats. Brain Res. 2020;1743:146949. PubMed