Stress pulmonary circulation parameters assessed by a cardiovascular magnetic resonance in patients after a heart transplant
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35414701
PubMed Central
PMC9005501
DOI
10.1038/s41598-022-09739-z
PII: 10.1038/s41598-022-09739-z
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Magnetic Resonance Imaging methods MeSH
- Pulmonary Circulation * physiology MeSH
- Retrospective Studies MeSH
- Heart Transplantation * adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Rest pulmonary circulation parameters such as pulmonary transit time (PTT), heart rate corrected PTT (PTTc) and pulmonary transit beats (PTB) can be evaluated using several methods, including the first-pass perfusion from cardiovascular magnetic resonance. As previously published, up to 58% of patients after HTx have diastolic dysfunction detectable only in stress conditions. By using adenosine stress perfusion images, stress analogues of the mentioned parameters can be assessed. By dividing stress to rest biomarkers, potential new ratio parameters (PTT ratio and PTTc ratio) can be obtained. The objectives were to (1) provide more evidence about stress pulmonary circulation biomarkers, (2) present stress to rest ratio parameters, and (3) assess these biomarkers in patients with presumed diastolic dysfunction after heart transplant (HTx) and in childhood cancer survivors (CCS) without any signs of diastolic dysfunction. In this retrospective study, 48 patients after HTx, divided into subgroups based on echocardiographic signs of diastolic dysfunction (41 without, 7 with) and 39 CCS were enrolled. PTT was defined as the difference between the onset time of the signal intensity increase in the left and the right ventricle. PTT in rest conditions were without significant differences when comparing the CCS and HTx subgroup without diastolic dysfunction (4.96 ± 0.93 s vs. 5.51 ± 1.14 s, p = 0.063) or with diastolic dysfunction (4.96 ± 0.93 s vs. 6.04 ± 1.13 s, p = 0.13). However, in stress conditions, both PTT and PTTc were significantly lower in the CCS group than in the HTx subgroups, (PTT: 3.76 ± 0.78 s vs. 4.82 ± 1.03 s, p < 0.001; 5.52 ± 1.56 s, p = 0.002). PTT ratio and PTTc ratio were below 1 in all groups. In conclusion, stress pulmonary circulation parameters obtained from CMR showed prolonged PTT and PTTc in HTx groups compared to CCS, which corresponds with the presumption of underlying diastolic dysfunction. The ratio parameters were less than 1.
Department of Medical Imaging St Anne's University Hospital Brno Czech Republic
Department of Paediatric Oncology University Hospital Brno Brno Czech Republic
Department of Pathophysiology Faculty of Medicine Masaryk University Brno Czech Republic
Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Centre St Anne's University Hospital Brno Czech Republic
See more in PubMed
Slutsky RA, Bhargava V, Higgins CB. Pulmonary circulation time: Comparison of mean, median, peak, and onset (appearance) values using indocyanine green and first-transit radionuclide techniques. Am. Heart J. 1983;106(1 Pt 1):41–45. doi: 10.1016/0002-8703(83)90436-2. PubMed DOI
de Lepper AGW, Herold IHF, Saporito S, Bouwman RA, Mischi M, Korsten HHM, et al. Noninvasive pulmonary transit time: A new parameter for general cardiac performance. Echocardiography. 2017;34(8):1138–1145. doi: 10.1111/echo.13590. PubMed DOI
Herold IHF, Soliman Hamad MA, van Assen HC, Bouwman RA, Korsten HHM, Mischi M. Pulmonary blood volume measured by contrast enhanced ultrasound: A comparison with transpulmonary thermodilution. Br. J. Anaesth. 2015;115(1):53–60. doi: 10.1093/bja/aeu554. PubMed DOI
Colin GC, Pouleur A-C, Gerber BL, Poncelet P-A, de Meester C, D’Hondt A-M, et al. Pulmonary hypertension detection by computed tomography pulmonary transit time in heart failure with reduced ejection fraction. Eur. Heart J. Cardiovasc. Imaging. 2020;21(11):1291–1298. doi: 10.1093/ehjci/jez290. PubMed DOI
Shors SM, Cotts WG, Pavlovic-Surjancev B, François CJ, Gheorghiade M, Finn JP. Heart failure: Evaluation of cardiopulmonary transit times with time-resolved MR angiography. Radiology. 2003;229(3):743–748. doi: 10.1148/radiol.2293021363. PubMed DOI
Houard L, Amzulescu MS, Colin G, Langet H, Militaru S, Rousseau MF, et al. Prognostic value of pulmonary transit time by cardiac magnetic resonance on mortality and heart failure hospitalization in patients with advanced heart failure and reduced ejection fraction. Circ. Cardiovasc. Imaging. 2021;14(1):e011680. doi: 10.1161/CIRCIMAGING.120.011680. PubMed DOI
Ricci F, Aung N, Thomson R, Boubertakh R, Camaioni C, Doimo S, et al. Pulmonary blood volume index as a quantitative biomarker of haemodynamic congestion in hypertrophic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging. 2019;20(12):1368–1376. doi: 10.1093/ehjci/jez213. PubMed DOI PMC
Ricci F, Barison A, Todiere G, Mantini C, Cotroneo AR, Emdin M, et al. Prognostic value of pulmonary blood volume by first-pass contrast-enhanced CMR in heart failure outpatients: The PROVE-HF study. Eur. Heart J. Cardiovasc. Imaging. 2018;19(8):896–904. doi: 10.1093/ehjci/jex214. PubMed DOI
Cao JJ, Li L, McLaughlin J, Passick M. Prolonged central circulation transit time in patients with HFpEF and HFrEF by magnetic resonance imaging. Eur. Heart J. Cardiovasc. Imaging. 2018;19(3):339–346. doi: 10.1093/ehjci/jex051. PubMed DOI
Meluzin J, Hude P, Leinveber P, Krejci J, Spinarova L, Bedanova H, et al. High prevalence of exercise-induced heart failure with normal ejection fraction in post-heart transplant patients. Biomed. Pap. 2014;158(2):295–302. doi: 10.5507/bp.2013.095. PubMed DOI
Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: Retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. doi: 10.1136/bmj.b4606. PubMed DOI PMC
Yeh ETH, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, et al. Cardiovascular complications of cancer therapy. Circulation. 2004;109(25):3122–3131. doi: 10.1161/01.CIR.0000133187.74800.B9. PubMed DOI
2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension | European Heart Journal | Oxford Academic [Internet]. https://academic.oup.com/eurheartj/article/37/1/67/2887599. Accessed 28 Mar 2021.
Panovský R, Pešl M, Holeček T, Máchal J, Feitová V, Mrázová L, et al. Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: A cardiovascular magnetic resonance study with T1 mapping. Orphanet J. Rare Dis. 2019;14(1):10. doi: 10.1186/s13023-018-0986-0. PubMed DOI PMC
Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J. Cardiovasc. Magn. Reson. 2013;1(15):35. doi: 10.1186/1532-429X-15-35. PubMed DOI PMC
Ishida M, Schuster A, Morton G, Chiribiri A, Hussain S, Paul M, et al. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2011;13(1):28. doi: 10.1186/1532-429X-13-28. PubMed DOI PMC
Styner M, Brechbuhler C, Szckely G, Gerig G. Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imaging. 2000;19(3):153–165. doi: 10.1109/42.845174. PubMed DOI
Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: A survey. IEEE Trans. Med. Imaging. 2003;22(8):986–1004. doi: 10.1109/TMI.2003.815867. PubMed DOI
Bazett HC. An analysis of the time-relations of electrocardiogram. Heart. 1920;7:353.
Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82(5):1595–1606. doi: 10.1161/01.CIR.82.5.1595. PubMed DOI
Salerno M, Taylor A, Yang Y, Kuruvilla S, Ragosta M, Meyer CH, et al. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease. Circ. Cardiovasc. Imaging. 2014;7(4):639–646. doi: 10.1161/CIRCIMAGING.113.001584. PubMed DOI PMC
Monahan TS, Sawmiller DR, Fenton RA, Dobson JG. Adenosine A2a-receptor activation increases contractility in isolated perfused hearts. Am. J. Physiol. Heart Circ. Physiol. 2000;279(4):H1472–H1481. doi: 10.1152/ajpheart.2000.279.4.H1472. PubMed DOI
Hori M, Kitakaze M. Adenosine, the heart, and coronary circulation. Hypertension. 1991;18(5):565–574. doi: 10.1161/01.HYP.18.5.565. PubMed DOI
Chandrasekera PC, McIntosh VJ, Cao FX, Lasley RD. Differential effects of adenosine A2a and A2b receptors on cardiac contractility. Am. J. Physiol. Heart Circ. Physiol. 2010;299(6):H2082–H2089. doi: 10.1152/ajpheart.00511.2010. PubMed DOI PMC
Costa MA, Matsumoto JPP, Carrettiero DC, Fior-Chadi DR. Adenosine A1 and A2a receptors modulate the nitrergic system in cell culture from dorsomedial medulla oblongata. Auton. Neurosci. 2020;229:102737. doi: 10.1016/j.autneu.2020.102737. PubMed DOI
Tian L, Tang G, Liu Q, Yin Y, Li Y, Zhong Y. Blockade of adenosine A1 receptor in nucleus tractus solitarius attenuates baroreflex sensitivity response to dexmedetomidine in rats. Brain Res. 2020;1743:146949. doi: 10.1016/j.brainres.2020.146949. PubMed DOI
Ellenbogen KA, Thames MD, DiMarco JP, Sheehan H, Lerman BB. Electrophysiological effects of adenosine in the transplanted human heart. Evidence of supersensitivity. Circulation. 1990;81(3):821–828. doi: 10.1161/01.CIR.81.3.821. PubMed DOI
Flyer JN, Zuckerman WA, Richmond ME, Anderson BR, Mendelsberg TG, McAllister JM, et al. Prospective study of adenosine on atrioventricular nodal conduction in pediatric and young adult patients after heart transplantation. Circulation. 2017;135(25):2485–2493. doi: 10.1161/CIRCULATIONAHA.117.028087. PubMed DOI PMC
Jiménez-Jaso JM, Ezponda A, Sáenz-Diez JM, Caballeros M, Rábago G, Bastarrika G. Valoración del índice de reserva de perfusión miocárdica por resonancia magnética en pacientes con trasplante cardíaco. Radiologia. 2020;62(6):493–501. doi: 10.1016/j.rx.2020.04.004. PubMed DOI
Stress and Rest Pulmonary Transit Times Assessed by Cardiovascular Magnetic Resonance