Broad geographical distribution and high genetic diversity of shrew-borne Seewis hantavirus in Central Europe

. 2012 Aug ; 45 (1) : 48-55. [epub] 20120331

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22467179

For a long time hantaviruses were believed to be exclusively rodent-borne pathogens. Recent findings of numerous shrew- and mole-borne hantaviruses raise important questions on their phylogenetic origin. The objective of our study was to prove the presence and distribution of shrew-associated Seewis virus (SWSV) in different Sorex species in Central Europe. Therefore, a total of 353 Sorex araneus, 59 S. minutus, 27 S. coronatus, and one S. alpinus were collected in Germany, the Czech Republic, and Slovakia. Screening by hantavirus-specific L-segment RT-PCR revealed specific amplification products in tissues of 49 out of 353 S. araneus and four out of 59 S. minutus. S-segment sequences were obtained for 45 of the L-segment positive S. araneus and all four L-segment positive S. minutus. Phylogenetic investigation of these sequences from Germany, the Czech Republic, and Slovakia demonstrated their similarity to SWSV sequences from Hungary, Finland, Austria, and other sites in Germany. The low intra-cluster sequence variability and the high inter-cluster divergence suggest a long-term SWSV evolution in isolated Sorex populations. In 28 of the 49 SWSV S-segment sequences, an additional putative open reading frame (ORF) on the opposite strand to the nucleocapsid protein-encoding ORF was identified. This is the first comprehensive sequence analysis of SWSV strains from Germany, the Czech Republic, and Slovakia, indicating its broad geographical distribution and high genetic divergence. Future studies have to prove whether both S. araneus and S. minutus represent SWSV reservoir hosts or spillover infections are responsible for the parallel molecular detection of SWSV in both species.

Zobrazit více v PubMed

Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16296-301 PubMed

Emerg Infect Dis. 2009 Dec;15(12):2017-20 PubMed

Emerg Infect Dis. 2007 Nov;13(11):1784-7 PubMed

J Virol. 2010 Jan;84(1):459-74 PubMed

J Virol. 2009 Jun;83(12):6184-91 PubMed

J Med Virol. 2007 Oct;79(10):1527-36 PubMed

Curr Top Microbiol Immunol. 2001;256:77-90 PubMed

Virol J. 2011 Jul 28;8:373 PubMed

Hum Vaccin. 2011 Jun;7(6):685-93 PubMed

Emerg Infect Dis. 2007 Jul;13(7):980-5 PubMed

Mol Phylogenet Evol. 2008 Apr;47(1):237-50 PubMed

J Virol. 2011 Aug;85(15):7496-503 PubMed

PLoS One. 2009 Jul 07;4(7):e6149 PubMed

Vector Borne Zoonotic Dis. 2012 Jun;12(6):503-13 PubMed

Curr Top Microbiol Immunol. 2001;256:47-75 PubMed

Indian J Med Res. 1971 Nov;59(11):1758-60 PubMed

Mol Ecol. 1998 Apr;7(4):453-64 PubMed

Mol Biol Evol. 2008 Jul;25(7):1253-6 PubMed

Emerg Infect Dis. 2006 May;12(5):838-40 PubMed

Virol J. 2007 Oct 30;4:114 PubMed

Emerg Infect Dis. 2007 Mar;13(3):520-2 PubMed

J Clin Microbiol. 2005 Feb;43(2):808-12 PubMed

Vector Borne Zoonotic Dis. 2010 Aug;10(6):593-7 PubMed

Virol J. 2012 Jan 26;9:34 PubMed

Mol Biol Evol. 2011 Oct;28(10):2731-9 PubMed

Bioinformatics. 2010 Oct 1;26(19):2462-3 PubMed

Am J Trop Med Hyg. 2008 Feb;78(2):348-51 PubMed

Virol J. 2009 Nov 24;6:208 PubMed

Mol Biol Evol. 2008 Jul;25(7):1488-92 PubMed

Bioinformatics. 2003 Aug 12;19(12):1572-4 PubMed

Emerg Infect Dis. 2007 Sep;13(9):1420-3 PubMed

Virology. 2009 May 25;388(1):8-14 PubMed

Emerg Infect Dis. 2012 Jan;18(1):159-61 PubMed

Vector Borne Zoonotic Dis. 2010 Aug;10(6):585-91 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...