Intra-Individual Relationship between Heart Rate Variability and the Underlying Heart Rate in Children and Adolescents

. 2024 May 14 ; 13 (10) : . [epub] 20240514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38792438

Grantová podpora
NV19-02-00197 Ministry of Health

Background/Objective: The relationship between heart rate and heart rate variability (HRV) indices has been repeatedly studied in adults but limited data are available on the relationship in paediatric populations. Methods: Continuous 12-lead electrocardiograms were recorded in 1016 healthy children and adolescents (534 females) aged 4 to 19 years during postural manoeuvres with rapid changes between 10-min positions of supine → sitting → standing → supine → standing → sitting → supine. In each position, the averaged RR interval was measured together with four HRV indices, namely the SDNN, RMSSD, quasi-normalised high-frequency components (qnHF), and the proportions of low- and high-frequency components (LF/HF). In each subject, the slope of the linear regression between the repeated HRV measurements and the corresponding RR interval averages was calculated. Results: The intra-subject regression slopes, including their confidence intervals, were related to the age and sex of the subjects. The SDNN/RR, RMSSD/RR, and qnHF/RR slopes were significantly steeper (p < 0.001) and the (LF/HF)/RR slopes were significantly shallower (p < 0.001) in younger children compared to older children and adolescents. Conclusions: The study suggests that sympathetic and vagal influences on heart rate are present in both younger and older children. With advancing age, the sympatho-vagal balance gradually develops and allows the vagal control to suppress the sympathetic drive towards higher heart rates seen in younger age children.

Zobrazit více v PubMed

Task Force of the European Society of Cardiology the North American Society of Pacing and Electrophysiology Heart rate variability, standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–1065. doi: 10.1161/01.CIR.93.5.1043. PubMed DOI

Berntson G.G., Bigger J.T., Jr., Eckberg D.L., Grossman P., Kaufmann P.G., Malik M., Nagaraja H.N., Porges S.W., Saul J.P., Stone P.H., et al. Heart rate variability, origins, methods, and interpretive caveats. Psychophysiology. 1997;34:623–648. doi: 10.1111/j.1469-8986.1997.tb02140.x. PubMed DOI

Sassi R., Cerutti S., Lombardi F., Malik M., Huikuri H.V., Peng C.K., Schmidt G., Yamamoto Y. Advances in heart rate variability signal analysis, joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17:1341–1353. doi: 10.1093/europace/euv015. PubMed DOI

Kleiger R.E., Miller J.P., Bigger J.T., Jr., Moss A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987;59:256–562. doi: 10.1016/0002-9149(87)90795-8. PubMed DOI

Malik M., Farrell T., Cripps T., Camm A.J. Heart rate variability in relation to prognosis after myocardial infarction, selection of optimal processing techniques. Eur. Heart J. 1989;10:1060–1074. doi: 10.1093/oxfordjournals.eurheartj.a059428. PubMed DOI

Zuanetti G., Neilson J.M., Latini R., Santoro E., Maggioni A.P., Ewing D.J. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. The GISSI-2 results. Gruppo Italiano per lo Studio della Sopravvivenza nell’ Infarto Miocardico. Circulation. 1996;94:432–436. doi: 10.1161/01.cir.94.3.432. PubMed DOI

Giordano M., Manzella D., Paolisso G., Caliendo A., Varricchio M., Giordano C. Differences in heart rate variability parameters during the post-dialytic period in type II diabetic and non-diabetic ESRD patients. Nephrol. Dial. Transplant. 2001;16:566–573. doi: 10.1093/ndt/16.3.566. PubMed DOI

Burger A.J., D’Elia J.A., Weinrauch L.A., Lerman I., Gaur A. Marked abnormalities in heart rate variability are associated with progressive deterioration of renal function in type I diabetic patients with overt nephropathy. Int. J. Cardiol. 2002;86:281–287. doi: 10.1016/s0167-5273(02)00346-7. PubMed DOI

Urbancic-Rovan V., Meglic B., Stefanovska A., Bernjak A., Azman-Juvan K., Kocijancic A. Incipient cardiovascular autonomic imbalance revealed by wavelet analysis of heart rate variability in Type 2 diabetic patients. Diabet. Med. 2007;24:18–26. doi: 10.1111/j.1464-5491.2007.02019.x. PubMed DOI

Panina G., Khot U.N., Nunziata E., Cody R.J., Binkley P.F. Assessment of autonomic tone over a 24-hour period in patients with congestive heart failure, relation between mean heart rate and measures of heart rate variability. Am. Heart J. 1995;129:748–753. doi: 10.1016/0002-8703(95)90325-9. PubMed DOI

Panina G., Khot U.N., Nunziata E., Cody R.J., Binkley P.F. Role of spectral measures of heart rate variability as markers of disease progression in patients with chronic congestive heart failure not treated with angiotensin-converting enzyme inhibitors. Am. Heart J. 1996;131:153–157. doi: 10.1016/s0002-8703(96)90064-2. PubMed DOI

Nikolic V.N., Jevtovic-Stoimenov T., Stokanovic D., Milovanovic M., Velickovic-Radovanovic R., Pesic S., Stoiljkovic M., Pesic G., Ilic S., Deljanin-Ilic M., et al. An inverse correlation between TNF alpha serum levels and heart rate variability in patients with heart failure. J. Cardiol. 2013;62:37–43. doi: 10.1016/j.jjcc.2013.02.013. PubMed DOI

Faria M.T., Rodrigues S., Campelo M., Dias D., Rego R., Rocha H., Sá F., Tavares-Silva M., Pinto R., Pestana G., et al. Heart rate variability in patients with refractory epilepsy, The influence of generalized convulsive seizures. Epilepsy Res. 2021;178:106796. doi: 10.1016/j.eplepsyres.2021.106796. PubMed DOI

Kim W., Lee H., Lee K.W., Yang E., Kim S. The Association of nocturnal seizures and interictal cardiac/central autonomic function in frontal lobe epilepsy, Heart rate variability and central autonomic network analysis. Neuropsychiatr. Dis. Treat. 2023;19:2081–2091. doi: 10.2147/NDT.S426263. PubMed DOI PMC

Buchman T.G., Stein P.K., Goldstein B. Heart rate variability in critical illness and critical care. Curr. Opin. Crit. Care. 2002;8:311–315. doi: 10.1097/00075198-200208000-00007. PubMed DOI

Johnston B.W., Barrett-Jolley R., Krige A., Welters I.D. Heart rate variability: Measurement and emerging use in critical care medicine. J. Intensive Care Soc. 2020;21:148–157. doi: 10.1177/1751143719853744. PubMed DOI PMC

Wójcik M., Siatkowski I. The effect of cranial techniques on the heart rate variability response to psychological stress test in firefighter cadets. Sci. Rep. 2023;13:7780. doi: 10.1038/s41598-023-34093-z. PubMed DOI PMC

Schubert D.U.C., Serfaty F.M., Cunha M.R., Oigman W., Tarvainen M.P., Neves M.F. Heart rate variability and perception of mental stress among medical students and residents at an emergency department. Am. J. Emerg. Med. 2023;78:12–17. doi: 10.1016/j.ajem.2023.12.044. PubMed DOI

Qin H., Fietze I., Mazzotti D.R., Steenbergen N., Kraemer J.F., Glos M., Wessel N., Song L., Penzel T., Zhang X. Obstructive sleep apnea heterogeneity and autonomic function, a role for heart rate variability in therapy selection and efficacy monitoring. J. Sleep. Res. 2024;33:e14020. doi: 10.1111/jsr.14020. PubMed DOI

Flatt A.A., Esco M.R., Allen J.R., Robinson J.B., Earley R.L., Fedewa M.V., Bragg A., Keith C.M., Wingo J.E. Heart rate variability and training load among national collegiate athletic association division 1 college football players throughout spring camp. J. Strength. Cond. Res. 2018;32:3127–3134. doi: 10.1519/JSC.0000000000002241. PubMed DOI

Watanabe T., Sugiyama Y., Sumi Y., Watanabe M., Takeuchi K., Kobayashi F., Kono K. Effects of vital exhaustion on cardiac autononomic nervous functions assessed by heart rate variability at rest in middle-aged male workers. Int. J. Behav. Med. 2002;9:68–75. doi: 10.1207/s15327558ijbm0901_05. PubMed DOI

Hnatkova K., Copie X., Staunton A., Malik M. Numeric processing of Lorenz plots of R-R intervals from long-term ECGs. Comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction. J. Electrocardiol. 1995;28:74–80. doi: 10.1016/s0022-0736(95)80020-4. PubMed DOI

Bauer A., Kantelhardt J.W., Barthel P., Schneider R., Mäkikallio T., Ulm K., Hnatkova K., Schömig A., Huikuri H., Bunde A., et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction, cohort study. Lancet. 2006;367:1674–1681. doi: 10.1016/S0140-6736(06)68735-7. PubMed DOI

Voss A., Schroeder R., Truebner S., Goernig M., Figulla H.R., Schirdewan A. Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and Poincare plot analysis in risk stratification in patients with dilated cardiomyopathy. Chaos. 2007;17:015120. doi: 10.1063/1.2404633. PubMed DOI

Huikuri H.V., Zabel M., Lombardi F., Malik M., e-Health, Digital Rhythm Study Group of the European Heart Rhythm Association Measurement of cardiovascular autonomic function: Where to go from here? Int. J. Cardiol. 2017;249:73–74. doi: 10.1016/j.ijcard.2017.08.076. PubMed DOI

Lombardi F., Huikuri H., Schmidt G., Malik M., e-Rhythm Study Group of European Heart Rhythm Association Short-term heart rate variability: Easy to measure, difficult to interpret. Heart Rhythm. 2018;15:1559–1560. doi: 10.1016/j.hrthm.2018.05.023. PubMed DOI

Malik M., Camm A.J. Components of heart rate variability—What they really mean and what we really measure. Am. J. Cardiol. 1993;72:821–822. doi: 10.1016/0002-9149(93)91070-x. PubMed DOI

Copie X., Hnatkova K., Staunton A., Fei L., Camm A.J., Malik M. Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J. Am. Coll. Cardiol. 1996;27:270–276. doi: 10.1016/0735-1097(95)00454-8. PubMed DOI

Hedman A.E., Poloniecki J.D., Camm A.J., Malik M. Relation of mean heart rate and heart rate variability in patients with left ventricular dysfunction. Am. J. Cardiol. 1999;84:225–228. doi: 10.1016/s0002-9149(99)00240-4. PubMed DOI

Monfredi O., Lyashkov A.E., Johnsen A.B., Inada S., Schneider H., Wang R., Nirmalan M., Wisloff U., Maltsev V.A., Lakatta E.G., et al. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension. 2014;64:1334–1343. doi: 10.1161/HYPERTENSIONAHA.114.03782. PubMed DOI PMC

Bailón R., Serrano P., Laguna P. Influence of time-varying mean heart rate in coronary artery disease diagnostic performance of heart rate variability indices from exercise stress testing. J. Electrocardiol. 2011;44:445–452. doi: 10.1016/j.jelectrocard.2011.02.001. PubMed DOI

Malik M., Hnatkova K., Huikuri H.V., Lombardi F., Schmidt G., Zabel M. CrossTalk proposal, Heart rate variability is a valid measure of cardiac autonomic responsiveness. J. Physiol. 2019;597:2595–2598. doi: 10.1113/JP277500. PubMed DOI PMC

Boyett M., Wang Y., D’Souza A. CrossTalk opposing view, Heart rate variability as a measure of cardiac autonomic responsiveness is fundamentally flawed. J. Physiol. 2019;597:2599–2601. doi: 10.1113/JP277501. PubMed DOI PMC

Malik M., Hnatkova K., Huikuri H.V., Lombardi F., Schmidt G., Zabel M. Rebuttal. J. Physiol. 2019;597:2603–2604. doi: 10.1113/JP277962. PubMed DOI PMC

Sacha J., Pluta W. Alterations of an average heart rate change heart rate variability due to mathematical reasons. Int. J. Cardiol. 2008;128:444–447. doi: 10.1016/j.ijcard.2007.06.047. PubMed DOI

Sacha J. Why should one normalize heart rate variability with respect to average heart rate. Front. Physiol. 2013;4:306. doi: 10.3389/fphys.2013.00306. PubMed DOI PMC

Carter R., 3rd, Hinojosa-Laborde C., Convertino V.A. Heart rate variability in patients being treated for dengue viral infection, new insights from mathematical correction of heart rate. Front. Physiol. 2014;5:46. doi: 10.3389/fphys.2014.00046. PubMed DOI PMC

Sacha J. Interaction between heart rate and heart rate variability. Ann. Noninvasive Electrocardiol. 2014;19:207–216. doi: 10.1111/anec.12148. PubMed DOI PMC

Gąsior J.S., Sacha J., Jeleń P.J., Zieliński J., Przybylski J. Heart rate and respiratory rate influence on heart rate variability repeatability, Effects of the correction for the prevailing heart rate. Front. Physiol. 2016;7:356. doi: 10.3389/fphys.2016.00356. PubMed DOI PMC

de Geus E.J.C., Gianaros P.J., Brindle R.C., Jennings J.R., Berntson G.G. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology. 2019;56:e13287. doi: 10.1111/psyp.13287. PubMed DOI PMC

Maltsev A.V., Monfredi O., Maltsev V.A. Universal inverse-square relationship between heart rate variability and heart rate originating in cardiac pacemaker cells. JACC Clin. Electrophysiol. 2022;8:1042–1044. doi: 10.1016/j.jacep.2022.02.008. PubMed DOI

Gąsior J.S., Sacha J., Jeleń P.J., Pawłowski M., Werner B., Dąbrowski M.J. Interaction between heart rate variability and heart rate in pediatric population. Front. Physiol. 2015;6:385. doi: 10.3389/fphys.2015.00385. PubMed DOI PMC

Bobkowski W., Stefaniak M.E., Krauze T., Gendera K., Wykretowicz A., Piskorski J., Guzik P. Measures of heart rate variability in 24-h ECGs depend on age but not gender of healthy children. Front. Physiol. 2017;8:311. doi: 10.3389/fphys.2017.00311. PubMed DOI PMC

Pahlm O., Sórnmo L. Software QRS detection in ambulatory monitoring—A review. Med. Biol. Eng. Comput. 1984;22:289–297. doi: 10.1007/BF02442095. PubMed DOI

Kors J.A., Talmon J.L., van Bemmel J.H. Multilead ECG analysis. Comput. Biomed. Res. 1986;19:28–46. doi: 10.1016/0010-4809(86)90004-2. PubMed DOI

Daskalov I.K., Christov I.I. Electrocardiogram signal preprocessing for automatic detection of QRS boundaries. Med. Eng. Phys. 1999;21:37–44. doi: 10.1016/s1350-4533(99)00016-8. PubMed DOI

Köhler B.U., Hennig C., Orglmeister R. The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 2002;21:42–57. doi: 10.1109/51.993193. PubMed DOI

Arzeno N.M., Poon C.S., Deng Z.D. Quantitative analysis of QRS detection algorithms based on the first derivative of the ECG. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006;2006:1788–1791. doi: 10.1109/IEMBS.2006.260051. PubMed DOI

Hnatkova K., Šišáková M., Smetana P., Toman O., Huster K.M., Novotný T., Schmidt G., Malik M. Sex differences in heart rate responses to postural provocations. Int. J. Cardiol. 2019;297:126–134. doi: 10.1016/j.ijcard.2019.09.044. PubMed DOI PMC

Montano N., Ruscone T.G., Porta A., Lombardi F., Pagani M., Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994;90:1826–1831. doi: 10.1161/01.cir.90.4.1826. PubMed DOI

Nagai N., Moritani T. Effect of physical activity on autonomic nervous system function in lean and obese children. Int. J. Obes. Relat. Metab. Disord. 2004;28:27–33. doi: 10.1038/sj.ijo.0802470. PubMed DOI

Iwasa Y., Nakayasu K., Nomura M., Nakaya Y., Saito K., Ito S. The relationship between autonomic nervous activity and physical activity in children. Pediatr. Int. 2005;47:361–371. doi: 10.1111/j.1442-200x.2005.02082.x. PubMed DOI

Radtke T., Khattab K., Brugger N., Eser P., Saner H., Wilhelm M. High-volume sports club participation and autonomic nervous system activity in children. Eur. J. Clin. Investig. 2013;43:821–828. doi: 10.1111/eci.12112. PubMed DOI

Harteveld L.M., Nederend I., Ten Harkel A.D.J., Schutte N.M., de Rooij S.R., Vrijkotte T.G.M., Oldenhof H., Popma A., Jansen L.M.C., Suurland J., et al. Maturation of the cardiac autonomic nervous system activity in children and adolescents. J. Am. Heart Assoc. 2021;10:e017405. doi: 10.1161/JAHA.120.017405. PubMed DOI PMC

Oketa-Onyut Julu P. Normal autonomic neurophysiology of postural orthostatic tachycardia and recommended physiological assessments in postural orthostatic tachycardia syndrome. Physiol. Rep. 2020;8:e14465. doi: 10.14814/phy2.14465. PubMed DOI PMC

Sibley K.M., Mochizuki G., Lakhani B., McIlroy W.E. Autonomic contributions in postural control, a review of the evidence. Rev. Neurosci. 2014;25:687–697. doi: 10.1515/revneuro-2014-0011. PubMed DOI

Voss A., Kurths J., Kleiner H.J., Witt A., Wessel N., Saparin P., Osterziel K.J., Schurath R., Dietz R. The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res. 1996;31:419–433. doi: 10.1016/S0008-6363(96)00008-9. PubMed DOI

Porta A., Gnecchi-Ruscone T., Tobaldini E., Guzzetti S., Furlan R., Montano N. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. 2007;103:1143–1149. doi: 10.1152/japplphysiol.00293.2007. PubMed DOI

Mäkikallio T.H., Huikuri H.V., Hintze U., Videbaek J., Mitrani R.D., Castellanos A., Myerburg R.J., Møller M., DIAMOND Study Group (Danish Investigations of Arrhythmia and Mortality ON Dofetilide) Fractal analysis and time- and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am. J. Cardiol. 2001;87:178–182. doi: 10.1016/s0002-9149(00)01312-6. PubMed DOI

Peng C.K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82–87. doi: 10.1063/1.166141. PubMed DOI

Barthel P., Bauer A., Müller A., Huster K.M., Kanters J.K., Paruchuri V., Yang X., Ulm K., Malik M., Schmidt G. Spontaneous baroreflex sensitivity, prospective validation trial of a novel technique in survivors of acute myocardial infarction. Heart Rhythm. 2012;9:1288–1294. doi: 10.1016/j.hrthm.2012.04.017. PubMed DOI

Azevedo L.F., Perlingeiro P., Hachul D.T., Gomes-Santos I.L., Tsutsui J.M., Negrao C.E., De Matos L.D. Predominance of intrinsic mechanism of resting heart rate control and preserved baroreflex sensitivity in professional cyclists after competitive training. PLoS ONE. 2016;11:e0148036. doi: 10.1371/journal.pone.0148036. PubMed DOI PMC

Sinnecker D., Dommasch M., Barthel P., Müller A., Dirschinger R.J., Hapfelmeier A., Huster K.M., Laugwitz K.L., Malik M., Schmidt G. Assessment of mean respiratory rate from ECG recordings for risk stratification after myocardial infarction. J. Electrocardiol. 2014;47:700–704. doi: 10.1016/j.jelectrocard.2014.04.021. PubMed DOI

Helliesen P.J., Cook C.D., Friedlander L., Agathon S. Studies of respiratory physiology in children. I. Mechanics of respiration and lung volumes in 85 normal children 5 to 17 years of age. Pediatrics. 1958;22:80–93. doi: 10.1542/peds.22.1.80. PubMed DOI

Leicht A.S., Hirning D.A., Allen G.D. Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. Exp. Physiol. 2003;88:441–446. doi: 10.1113/eph8802535. PubMed DOI

Hill L.K., Watkins L.L., Hinderliter A.L., Blumenthal J.A., Sherwood A. Racial differences in the association between heart rate variability and left ventricular mass. Exp. Physiol. 2017;102:764–772. doi: 10.1113/EP086228. PubMed DOI PMC

Reed K.E., Warburton D.E., Whitney C.L., McKay H.A. Differences in heart rate variability between Asian and Caucasian children living in the same Canadian community. Appl. Physiol. Nutr. Metab. 2006;31:277–282. doi: 10.1139/h05-015. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...