Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, validační studie
PubMed
27798083
PubMed Central
PMC5484037
DOI
10.1136/jclinpath-2016-204089
PII: jclinpath-2016-204089
Knihovny.cz E-zdroje
- Klíčová slova
- DIAGNOSTICS, LABORATORY TESTS, MOLECULAR ONCOLOGY, THYROID, THYROID CANCER,
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- nádory štítné žlázy diagnóza MeSH
- odchylka pozorovatele MeSH
- prediktivní hodnota testů MeSH
- tenkojehlová biopsie MeSH
- uzly štítné žlázy diagnóza MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- validační studie MeSH
- Názvy látek
- mikro RNA MeSH
AIMS: The distinction between benign and malignant thyroid nodules has important therapeutic implications. Our objective was to develop an assay that could classify indeterminate thyroid nodules as benign or suspicious, using routinely prepared fine needle aspirate (FNA) cytology smears. METHODS: A training set of 375 FNA smears was used to develop the microRNA-based assay, which was validated using a blinded, multicentre, retrospective cohort of 201 smears. Final diagnosis of the validation samples was determined based on corresponding surgical specimens, reviewed by the contributing institute pathologist and two independent pathologists. Validation samples were from adult patients (≥18 years) with nodule size >0.5 cm, and a final diagnosis confirmed by at least one of the two blinded, independent pathologists. The developed assay, RosettaGX Reveal, differentiates benign from malignant thyroid nodules, using quantitative RT-PCR. RESULTS: Test performance on the 189 samples that passed quality control: negative predictive value: 91% (95% CI 84% to 96%); sensitivity: 85% (CI 74% to 93%); specificity: 72% (CI 63% to 79%). Performance for cases in which all three reviewing pathologists were in agreement regarding the final diagnosis (n=150): negative predictive value: 99% (CI 94% to 100%); sensitivity: 98% (CI 87% to 100%); specificity: 78% (CI 69% to 85%). CONCLUSIONS: A novel assay utilising microRNA expression in cytology smears was developed. The assay distinguishes benign from malignant thyroid nodules using a single FNA stained smear, and does not require fresh tissue or special collection and shipment conditions. This assay offers a valuable tool for the preoperative classification of thyroid samples with indeterminate cytology.
Cooper University Hospital Cooper Medical School of Rowan University at Camden New Jersey USA
Geha Mental Health Center Petach Tikva Israel
H Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
National Centre of Clinical and Morphological Diagnostics St Petersburg Russia
Pathology Institute Meir Medical Center Kfar Saba Israel
Pathology Institute Rabin Medical Center Petach Tikva Israel
Pathology Institute Tel Aviv Sourasky Medical Center Tel Aviv Israel
Rosetta Genomics Inc Philadelphia Pennsylvania USA
Rosetta Genomics Ltd Rehovot Israel
Temple University Hospital Philadelphia Pennsylvania USA
The Johns Hopkins University School of Medicine Baltimore Maryland USA
The Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
Zobrazit více v PubMed
Zevallos JP, Hartman CM, Kramer JR, et al. . Increased thyroid cancer incidence corresponds to increased use of thyroid ultrasound and fine-needle aspiration: a study of the Veterans Affairs health care system. Cancer 2015;121:741–6. 10.1002/cncr.29122 PubMed DOI
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7–30. 10.3322/caac.21332 PubMed DOI
Bongiovanni M, Spitale A, Faquin WC, et al. . The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol 2012;56:333–9. 10.1159/000339959 PubMed DOI
Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 2009;132:658–65. 10.1309/AJCPPHLWMI3JV4LA PubMed DOI
Duick DS, Klopper JP, Diggans JC, et al. . The impact of benign gene expression classifier test results on the endocrinologist-patient decision to operate on patients with thyroid nodules with indeterminate fine-needle aspiration cytopathology. Thyroid 2012;22:996–1001. 10.1089/thy.2012.0180 PubMed DOI PMC
Nikiforov YE, Carty SE, Chiosea SI, et al. . Impact of the multi-gene thyroseq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid 2015;25:1217–23. 10.1089/thy.2015.0305 PubMed DOI PMC
Beaudenon-Huibregtse S, Alexander EK, Guttler RB, et al. . Centralized molecular testing for oncogenic gene mutations complements the local cytopathologic diagnosis of thyroid nodules. Thyroid 2014;24:1479–87. 10.1089/thy.2013.0640 PubMed DOI
Alexander EK, Kennedy GC, Baloch ZW, et al. . Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 2012;367:705–15. 10.1056/NEJMoa1203208 PubMed DOI
Labourier E, Shifrin A, Busseniers AE, et al. . Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab 2015;100:2743–50. 10.1210/jc.2015-1158 PubMed DOI PMC
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857–66. 10.1038/nrc1997 PubMed DOI
Farazi TA, Spitzer JI, Morozov P, et al. . miRNAs in human cancer. J Pathol 2011;223:102–15. 10.1002/path.2806 PubMed DOI PMC
Lu J, Getz G, Miska EA, et al. . MicroRNA expression profiles classify human cancers. Nature 2005;435:834–8. 10.1038/nature03702 PubMed DOI
Li MH, Fu SB, Xiao HS. Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol Sin 2015;36:1200–11. 10.1038/aps.2015.67 PubMed DOI PMC
Rosenfeld N, Aharonov R, Meiri E, et al. . MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 2008;26:462–9. 10.1038/nbt1392 PubMed DOI
Weissmann-Brenner A, Kushnir M, Lithwick Yanai G, et al. . Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int J Oncol 2012;40:2097–103. 10.3892/ijo.2012.1403 PubMed DOI
Shepshelovich D, Ram R, Uziel O, et al. . MicroRNA signature is indicative of long term prognosis in diffuse large B-cell lymphoma. Leuk Res 2015;39:632–7. 10.1016/j.leukres.2015.03.018 PubMed DOI
Landgraf P, Rusu M, Sheridan R, et al. . A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129:1401–14. 10.1016/j.cell.2007.04.040 PubMed DOI PMC
Bentwich I. A postulated role for microRNA in cellular differentiation. Faseb J 2005;19:875–9. 10.1096/fj.04-3609hyp PubMed DOI
Gilad S, Lithwick-Yanai G, Barshack I, et al. . Classification of the four main types of lung cancer using a microRNA-based diagnostic assay. J Mol Diagn 2012;14:510–17. 10.1016/j.jmoldx.2012.03.004 PubMed DOI
Meiri E, Mueller WC, Rosenwald S, et al. . A second-generation microRNA-based assay for diagnosing tumor tissue origin. Oncologist 2012;17:801–12. 10.1634/theoncologist.2011-0466 PubMed DOI PMC
Pallante P, Visone R, Ferracin M, et al. . MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 2006;13:497–508. 10.1677/erc.1.01209 PubMed DOI
He H, Jazdzewski K, Li W, et al. . The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005;102:19075–80. 10.1073/pnas.0509603102 PubMed DOI PMC
Weber F, Teresi RE, Broelsch CE, et al. . A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 2006;91:3584–91. 10.1210/jc.2006-0693 PubMed DOI
Nikiforova MN, Tseng GC, Steward D, et al. . MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008;93:1600–8. 10.1210/jc.2007-2696 PubMed DOI PMC
Xi Y, Nakajima G, Gavin E, et al. . Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. Rna 2007;13:1668–74. 10.1261/rna.642907 PubMed DOI PMC
Nikiforov YE, Seethala RR, Tallini G, et al. . Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol 2016;2:1023–9. 10.1001/jamaoncol.2016.0386 PubMed DOI PMC
Benjamin H, Schnitzer-Perlman T, Shtabsky A, et al. . Analytical validity of a microRNA-based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides. Cancer Cytopathol 2016. 10.1002/cncy.21731 PubMed DOI PMC
Griffiths-Jones S, Grocock RJ, van Dongen S, et al. . miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006;34(Database issue):D140–4. 10.1093/nar/gkj112 PubMed DOI PMC
Hudson J, Duncavage E, Tamburrino A, et al. . Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol 2013;95:62–7. 10.1016/j.yexmp.2013.05.001 PubMed DOI PMC
Nikiforov YE, Carty SE, Chiosea SI, et al. . Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 2014;120:3627–34. 10.1002/cncr.29038 PubMed DOI PMC
Elsheikh TM, Asa SL, Chan JK, et al. . Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 2008;130:736–44. 10.1309/AJCPKP2QUVN4RCCP PubMed DOI
Wang CC, Friedman L, Kennedy GC, et al. . A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid 2011;21:243–51. 10.1089/thy.2010.0243 PubMed DOI PMC
Lloyd RV, Erickson LA, Casey MB, et al. . Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 2004;28:1336–40 10.1097/01.pas.0000135519.34847.f6 PubMed DOI
Hirokawa M, Carney JA, Goellner JR, et al. . Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol 2002;26:1508–14 10.1097/00000478-200211000-00014 PubMed DOI
Ganly I, Wang L, Tuttle RM, et al. . Invasion rather than nuclear features correlates with outcome in encapsulated follicular tumors: further evidence for the reclassification of the encapsulated papillary thyroid carcinoma follicular variant. Hum Pathol 2015;46:657–64. 10.1016/j.humpath.2015.01.010 PubMed DOI PMC
Haugen BR, Alexander EK, Bible KC, et al. . 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133. 10.1089/thy.2015.0020 PubMed DOI PMC
Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159:676–90. 10.1016/j.cell.2014.09.050 PubMed DOI PMC
Williams ED. Guest editorial: two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol 2000;8:181–3. PubMed
Benvenga S, Koch CA. Molecular pathways associated with aggressiveness of papillary thyroid cancer. Curr Genomics 2014;15:162–70. 10.2174/1389202915999140404100958 PubMed DOI PMC
Yang Z, Yuan Z, Fan Y, et al. . Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma. Mol Med Rep 2013;8:1353–8. 10.3892/mmr.2013.1699 PubMed DOI
Chen YT, Kitabayashi N, Zhou XK, et al. . MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol 2008;21:1139–46. 10.1038/modpathol.2008.105 PubMed DOI
Cong D, He M, Chen S, et al. . Expression profiles of pivotal microRNAs and targets in thyroid papillary carcinoma: an analysis of The Cancer Genome Atlas. Onco Targets Ther 2015;8:2271–7. 10.2147/OTT.S85753 PubMed DOI PMC
Dettmer M, Vogetseder A, Durso MB, et al. . MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab 2013;98:E1–7. 10.1210/jc.2012-2694 PubMed DOI PMC
Agretti P, Ferrarini E, Rago T, et al. . MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. Eur J Endocrinol 2012;167:393–400. 10.1530/EJE-12-0400 PubMed DOI
Keutgen XM, Filicori F, Crowley MJ, et al. . A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res 2012;18:2032–8. 10.1158/1078-0432.CCR-11-2487 PubMed DOI
Kitano M, Rahbari R, Patterson EE, et al. . Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples. Thyroid 2012;22:285–91. 10.1089/thy.2011.0313 PubMed DOI PMC
Shen R, Liyanarachchi S, Li W, et al. . MicroRNA signature in thyroid fine needle aspiration cytology applied to ‘atypia of undetermined significance’ cases. Thyroid 2012;22:9–16. 10.1089/thy.2011.0081 PubMed DOI PMC
Fassina A, Cappellesso R, Simonato F, et al. . A 4-MicroRNA signature can discriminate primary lymphomas from anaplastic carcinomas in thyroid cytology smears. Cancer Cytopathol 2014;122:274–81. 10.1002/cncy.21383 PubMed DOI
Panebianco F, Mazzanti C, Tomei S, et al. . The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer 2015;15:918. PubMed PMC
Molecular markers in well-differentiated thyroid cancer