Speed of heart rate changes during postural provocations in children and adolescents
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NH/16/2/32499
British Heart Foundation - United Kingdom
NV19-02-00197
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38789480
PubMed Central
PMC11126691
DOI
10.1038/s41598-024-62000-7
PII: 10.1038/s41598-024-62000-7
Knihovny.cz E-zdroje
- MeSH
- autonomní nervový systém fyziologie MeSH
- dítě MeSH
- elektrokardiografie * MeSH
- lidé MeSH
- mladiství MeSH
- nervus vagus fyziologie MeSH
- postura těla * fyziologie MeSH
- srdeční frekvence * fyziologie MeSH
- supinační poloha fyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Heart rate is under constant autonomic influence but the development of the influence in children is not fully understood. Continuous electrocardiograms were obtained in 1045 healthy school-age children (550 females) during postural provocations with body position changes between supine, sitting, standing, supine, standing, sitting and supine (in this order), 10 min in each position with position changes within 20 s. Heart rate was measured in each position and speed of heart rate changes between positions were assessed by regressions of rates versus timing of individual cardiac cycles. Supine heart rate was gradually decreasing with age: 82.32 ± 9.92, 74.33 ± 9.79, 67.43 ± 9.45 beats per minute (bpm) in tertile age groups < 11, 11-15, > 15 years, respectively (p < 0.0001), with no significant sex difference. Averaged speed of heart rate changes differed little between sexes and age groups but was significantly faster during rate deceleration than acceleration (e.g., supine ↔ standing: 2.99 ± 1.02 vs. 2.57 ± 0.68 bpm/s, p < 0.0001). The study suggests that in children, vagal heart rate control does not noticeably change between ages of approximately 6-19 years. The gradual resting heart rate decrease during childhood and adolescence is likely caused by lowering of cardiac sympathetic influence from sympathetic overdrive in small children to adult-like sympatho-vagal balance in older adolescents.
Zobrazit více v PubMed
Hainsworth R. Physiology of the cardiac autonomic system. In: Malik M, editor. Clinical Guide to Cardiac Autonomic Tests. Dordrecht: Kluwer; 1998. pp. 3–28.
Levy MN, Martin PJ, Iano T, Zieske H. Effects of single vagal stimuli on heart rate and atrioventricular conduction. Am. J. Physiol. 1970;218:1256–1262. doi: 10.1152/ajplegacy.1970.218.5.1256. PubMed DOI
Parker P, Celler BG, Potter EK, McCloskey DI. Vagal stimulation and cardiac slowing. J Auton Nerv Syst. 1984;11:226–231. doi: 10.1016/0165-1838(84)90080-8. PubMed DOI
Furnival CM, Linden RJ, Snow HM. Chronotropic and inotropic effects on the dog heart of stimulating the efferent cardiac sympathetic nerves. J. Physiol. 1973;230:137–153. doi: 10.1113/jphysiol.1973.sp010179. PubMed DOI PMC
Sutton MGSJ, Marier DL, Oldershaw PJ, Sacchetti R, Gibson DG. Effect of age related changes in chamber size, wall thickness, and heart rate on left ventricular function in normal children. Br. Heart J. 1982;48:342–351. doi: 10.1136/hrt.48.4.342. PubMed DOI PMC
Harteveld LM, et al. Maturation of the Cardiac autonomic nervous system activity in children and adolescents. J. Am. Heart Assoc. 2021;16:e017405. doi: 10.1161/JAHA.120.017405. PubMed DOI PMC
Burstein DS, et al. Normative values for cardiopulmonary exercise stress testing using ramp cycle ergometry in children and adolescents. J. Pediatr. 2021;229:61–69. doi: 10.1016/j.jpeds.2020.09.018. PubMed DOI
Drew BJ, et al. Practice standards for electrocardiographic monitoring in hospital settings: An American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: endorsed by the International Society of Computerized Electrocardiology and the American Association of Critical-Care Nurses. Circulation. 2004;110:2721–2746. doi: 10.1161/01.CIR.0000145144.56673.59. PubMed DOI
Pahlm O, Sornmo L. Software QRS detection in ambulatory monitoring—A review. Med. Biol. Eng. Comput. 1984;22:289–297. doi: 10.1007/BF02442095. PubMed DOI
Kors JA, Talmon JL, Van Bemmel JH. Multilead ECG analysis. Comput. Biomed. Res. 1986;19:28–46. doi: 10.1016/0010-4809(86)90004-2. PubMed DOI
Daskalov IK, Christov II. Electrocardiogram signal pre-processing for automatic detection of QRS boundaries. Med. Eng. Phys. 1999;21:37–44. doi: 10.1016/S1350-4533(99)00016-8. PubMed DOI
Köhler BU, Hennig C, Orglmeister R. The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 2002;21:42–57. doi: 10.1109/51.993193. PubMed DOI
Hnatkova K, et al. QRS micro-fragmentation as a mortality predictor. Eur. Heart J. 2022;43:4177–4191. doi: 10.1093/eurheartj/ehac085. PubMed DOI PMC
https://www.strobe-statement.org/checklists/
Malik M, Hnatkova K, Huikuri HV, Lombardi F, Schmidt G, Zabel M. CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsiveness. J. Physiol. 2019;597:2595–2598. doi: 10.1113/JP277500. PubMed DOI PMC
Malik M, Hnatkova K, Huikuri HV, Lombardi F, Schmidt G, Zabel M. Rebuttal. J. Physiol. 2019;597:2603–2604. doi: 10.1113/JP277962. PubMed DOI PMC
Hnatkova K, et al. Sex differences in heart rate responses to postural provocations. Int. J. Cardiol. 2019;97:126–134. doi: 10.1016/j.ijcard.2019.09.044. PubMed DOI PMC
Linde C, et al. Sex differences in cardiac arrhythmia: A consensus document of the European Heart Rhythm Association, endorsed by the Heart Rhythm Society and Asia Pacific Heart Rhythm Society. Europace. 2018;20:1565–1565ao. doi: 10.1093/europace/euy067. PubMed DOI
Feldman R, Eidelman AI. Maternal postpartum behavior and the emergence of infant-mother and infant-father synchrony in preterm and full-term infants: the role of neonatal vagal tone. Dev. Psychobiol. 2007;49:290–302. doi: 10.1002/dev.20220. PubMed DOI
Mateus V, Cruz S, Ferreira-Santos F, Osório A, Sampaio A, Martins C. Contributions of infant vagal regulation at 1 month to subsequent joint attention abilities. Dev. Psychobiol. 2018;60:111–117. doi: 10.1002/dev.21582. PubMed DOI
Gendras J, et al. The newborn infant parasympathetic evaluation index for acute procedural pain assessment in preterm infants. Pediatr. Res. 2021;89:1840–1847. doi: 10.1038/s41390-020-01152-4. PubMed DOI
Gao MM, et al. Dynamics of mother-infant parasympathetic regulation during face-to-face interaction: The role of maternal emotion dysregulation. Psychophysiology. 2023;60:e14248. doi: 10.1111/psyp.14248. PubMed DOI PMC
Shojaei-Brosseau T, Bonaïti-Pellie C, Lyonnet S, Feingold J, Lucet V. Vagal overactivity: A risk factor of sudden infant death syndrome? Arch. Dis. Child. 2003;88:88. doi: 10.1136/adc.88.1.88. PubMed DOI PMC
Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994;90:1826–1831. doi: 10.1161/01.CIR.90.4.1826. PubMed DOI
Yang H, Drummer TD, Carter JR. Sex differences in sympathetic neural and limb vascular reactivity to mental stress in humans. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H436–H443. doi: 10.1152/ajpheart.00688.2012. PubMed DOI
Sheriff DD, Nådland IH, Toska K. Role of sympathetic responses on the hemodynamic consequences of rapid changes in posture in humans. J. Appl. Physiol. 2010;108:523–532. doi: 10.1152/japplphysiol.01185.2009. PubMed DOI
Salameh A, Gebauer RA, Grollmuss O, Vít P, Reich O, Janousek J. Normal limits for heart rate as established using 24-hour ambulatory electrocardiography in children and adolescents. Cardiol. Young. 2008;18:467–472. doi: 10.1017/S1047951108002539. PubMed DOI
Neumann C, et al. Comparison of the newborn infant parasympathetic evaluation (NIPE™) index to changes in heart rate to detect intraoperative nociceptive stimuli in healthy and critically ill children below 2 years: An observational study. Paediatr. Anaesth. 2022;32:815–824. doi: 10.1111/pan.14446. PubMed DOI
Karmakar C, et al. Multi-lag HRV analysis discriminates disease progression of post-infarct people with no diabetes versus diabetes. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015;2015:2367–2370. PubMed
Senanayake S, Harrison N, Lewis M. Influence of physical rehabilitation on heart rate dynamics in patients with idiopathic pulmonary fibrosis. J. Exerc. Rehabil. 2019;15:160–169. doi: 10.12965/jer.1836452.226. PubMed DOI PMC
Rampichini S, et al. Impaired heart rate recovery after sub-maximal physical exercise in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2020;40:101960. doi: 10.1016/j.msard.2020.101960. PubMed DOI
Laurino MJL, da Silva AKF, Santos LA, Vanderlei LCM. Water drinking during aerobic exercise improves the recovery of non-linear heart rate dynamics in coronary artery disease: crossover clinical trial. Front. Neurosci. 2023;17:1147299. doi: 10.3389/fnins.2023.1147299. PubMed DOI PMC
Bauer A, et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: Cohort study. Lancet. 2006;367:1674–1681. doi: 10.1016/S0140-6736(06)68735-7. PubMed DOI
Bauer A, et al. Risk prediction by heart rate turbulence and deceleration capacity in postinfarction patients with preserved left ventricular function retrospective analysis of 4 independent trials. J. Electrocardiol. 2009;42:597–601. doi: 10.1016/j.jelectrocard.2009.07.013. PubMed DOI
Guzik P, et al. Heart rate deceleration runs for postinfarction risk prediction. J. Electrocardiol. 2012;45:70–76. doi: 10.1016/j.jelectrocard.2011.08.006. PubMed DOI
Lundberg U, Wallin L, Lindstedt G, Frankenhaeuser M. Steroid sex hormones and cardiovascular function in healthy males and females: A correlational study. Pharmacol. Biochem. Behav. 1990;37:325–327. doi: 10.1016/0091-3057(90)90342-F. PubMed DOI
Leicht AS, Hirning DA, Allen GD. Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. Exp. Physiol. 2003;88:441–446. doi: 10.1113/eph8802535. PubMed DOI
Seravalle G, Facchetti R, Cappellini C, Annaloro A, Gelfi E, Grassi G. Elevated heart rate as sympathetic biomarker in human obesity. Nutr. Metab. Cardiovasc. Dis. 2022;32:2367–2374. doi: 10.1016/j.numecd.2022.07.011. PubMed DOI
Azevedo LF, et al. Predominance of intrinsic mechanism of resting heart rate control and preserved baroreflex sensitivity in professional cyclists after competitive training. PLoS One. 2016;11:e0148036. doi: 10.1371/journal.pone.0148036. PubMed DOI PMC
Barthel P, et al. Spontaneous baroreflex sensitivity: Prospective validation trial of a novel technique in survivors of acute myocardial infarction. Heart Rhythm. 2012;9:1288–1294. doi: 10.1016/j.hrthm.2012.04.017. PubMed DOI
Malik M, et al. Frequency versus time domain analysis of signal-averaged electrocardiograms. I. Reproducibility of the results. J. Am. Coll. Cardiol. 1992;20:127–134. doi: 10.1016/0735-1097(92)90148-G. PubMed DOI