Development of autonomic heart rate modulations during childhood and adolescence
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NH/16/2/32499
British Heart Foundation - United Kingdom
NV19-02-00197
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38937370
PubMed Central
PMC11271370
DOI
10.1007/s00424-024-02979-0
PII: 10.1007/s00424-024-02979-0
Knihovny.cz E-zdroje
- Klíčová slova
- Age-dependency, Children, Heart rate, Heart rate modulations, Sympatho-vagal balance,
- MeSH
- autonomní nervový systém * fyziologie MeSH
- dítě MeSH
- dospělí MeSH
- elektrokardiografie metody MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- postura těla fyziologie MeSH
- předškolní dítě MeSH
- srdeční frekvence * fyziologie MeSH
- supinační poloha MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Autonomic control of heart rate is well known in adult subjects, but limited data are available on the development of the heart rate control during childhood and adolescence. Continuous 12-lead electrocardiograms were recorded in 1045 healthy children and adolescents (550 females) aged 4 to 19 years during postural manoeuvres involving repeated 10-min supine, unsupported sitting, and unsupported standing positions. In each position, heart rate was measured, and heart rate variability indices were evaluated (SDNN, RMSSD, and high (HF) and low (LF) frequency components were obtained). Quasi-normalized HF frequency components were defined as qnHF = HF/(HF + LF). These measurements were, among others, related to age using linear regressions. In supine position, heart rate decreases per year of age were significant in both sexes but lower in females than in males. In standing position, these decreases per year of age were substantially lowered. RMSSD and qnHF indices were independent of age in supine position but significantly decreased with age in sitting and standing positions. Correspondingly, LF/HF proportions showed steep increases with age in sitting and standing positions but not in the supine position. The study suggests that baseline supine parasympathetic influence shows little developmental changes during childhood and adolescence but that in young children, sympathetic branch is less responsive to vagal influence. While vagal influences modulate cardiac periods in young and older children equally, they are less able to suppress the sympathetic influence in younger children.
Zobrazit více v PubMed
Agelink MW, Malessa R, Baumann B, Majewski T, Akila F, Zeit T, Ziegler D (2001) Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clin Auton Res 11:99–108. 10.1007/BF02322053 10.1007/BF02322053 PubMed DOI
Azevedo LF, Perlingeiro P, Hachul DT, Gomes-Santos IL, Tsutsui JM, Negrao CE, De Matos LD (2016) Predominance of intrinsic mechanism of resting heart rate control and preserved baroreflex sensitivity in professional cyclists after competitive training. PLoS ONE 11:e0148036. 10.1371/journal.pone.0148036 10.1371/journal.pone.0148036 PubMed DOI PMC
Barthel P, Bauer A, Müller A, Huster KM, Kanters JK, Paruchuri V, Yang X, Ulm K, Malik M, Schmidt G (2012) Spontaneous baroreflex sensitivity: prospective validation trial of a novel technique in survivors of acute myocardial infarction. Heart Rhythm 9:1288–1294. 10.1016/j.hrthm.2012.04.017 10.1016/j.hrthm.2012.04.017 PubMed DOI
van den Berg ME, Rijnbeek PR, Niemeijer MN, Hofman A, van Herpen G, Bots ML, Hillege H, Swenne CA, Eijgelsheim M, Stricker BH (2018) Kors JA (2018) Normal values of corrected heart-rate variability in 10-second electrocardiograms for all ages. Front Physiol 9:424. 10.3389/fphys.2019.01373 10.3389/fphys.2019.01373 PubMed DOI PMC
Boyett M, Wang Y, D’Souza A (2019) CrossTalk opposing view: Heart rate variability as a measure of cardiac autonomic responsiveness is fundamentally flawed. J Physiol 597:2599–2601. 10.1113/JP277501 10.1113/JP277501 PubMed DOI PMC
Britton A, Shipley M, Malik M, Hnatkova K, Hemingway H, Marmot M (2007) Changes in heart rate and heart rate variability over time in middle-aged men and women in the general population (from the Whitehall II Cohort Study). Am J Cardiol 100:524–527. 10.1016/j.amjcard.2007.03.056 10.1016/j.amjcard.2007.03.056 PubMed DOI PMC
Casadei B, Moon J, Johnston J, Caiazza A, Sleight P (1996) Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? J Appl Physiol 81:556–564. 10.1152/jappl.1996.81.2.556 10.1152/jappl.1996.81.2.556 PubMed DOI
Catai AM, Takahashi ACM, Perseguini NM, Milan JC, Minatel V, Rehder-Santos P, Marchi A, Bari V, Porta A (2014) Effect of the postural challenge on the dependence of the cardiovascular control complexity on age. Entropy 16:6686–6704. 10.3390/e1612668610.3390/e16126686 DOI
Chiu HW, Wang TH, Huang LC, Tso HW, Kao T (2003) The influence of mean heart rate on measures of heart rate variability as markers of autonomic function: a model study. Med Eng Phys 25:475–481. 10.1016/s1350-4533(03)00019-5 10.1016/s1350-4533(03)00019-5 PubMed DOI
Daskalov IK, Christov II (1999) Electrocardiogram signal preprocessing for automatic detection of QRS boundaries. Med Eng Phys 21:37–44. 10.1016/s1350-4533(99)00016-8 10.1016/s1350-4533(99)00016-8 PubMed DOI
Dollar JM, Calkins SD, Berry NT, Perry NB, Keane SP, Shanahan L, Wideman L (2020) Developmental patterns of respiratory sinus arrhythmia from toddlerhood to adolescence. Dev Psychol 56:783–794. 10.1037/dev0000894 10.1037/dev0000894 PubMed DOI PMC
Evans JM, Ziegler MG, Patwardhan AR, Ott JB, Kim CS, Leonelli FM, Knapp CF (2001) Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes. J Appl Physiol 91:2611–2618. 10.1152/jappl.2001.91.6.2611 10.1152/jappl.2001.91.6.2611 PubMed DOI
Farah BQ, Barros MV, Balagopal B, Ritti-Dias RM (2014) Heart rate variability and cardiovascular risk factors in adolescent boys. J Pediatr 165:945–950. 10.1016/j.jpeds.2014.06.065 10.1016/j.jpeds.2014.06.065 PubMed DOI
Gąsior JS, Młyńczak M, Rosoł M, Wieniawski P, Walecka I, Cybulski G, Werner B (2023) Validity of the Pneumonitor for RR intervals acquisition for short-term heart rate variability analysis extended with respiratory data in pediatric cardiac patients. Kardiol Pol 81:491–500. 10.33963/KP.a2023.0070 10.33963/KP.a2023.0070 PubMed DOI
Gąsior JS, Sacha J, Jeleń PJ, Pawłowski M, Werner B, Dąbrowski MJ (2015) Interaction between heart rate variability and heart rate in pediatric population. Front Physiol 6:385. 10.3389/fphys.2015.00385 10.3389/fphys.2015.00385 PubMed DOI PMC
Gatzke-Kopp L, Ram N (2018) Developmental dynamics of autonomic function in childhood. Psychophysiology 55:e13218. 10.1111/psyp.13218 10.1111/psyp.13218 PubMed DOI
Gibbons CH (2019) Basics of autonomic nervous system function. Handb Clin Neurol 160:407–418. 10.1016/B978-0-444-64032-1.00027-8 10.1016/B978-0-444-64032-1.00027-8 PubMed DOI
González-Duarte A, Cotrina-Vidal M, Kaufmann H, Norcliffe-Kaufmann L (2023) Familial dysautonomia. Clin Auton Res 33:269–280. 10.1007/s10286-023-00941-1 10.1007/s10286-023-00941-1 PubMed DOI
Guzzetti S, Mayet J, Shahi M, Mezzetti S, Foale RA, Sever PS, Poulter NR, Porta A, Malliani A, Thom SA (2000) Absence of sympathetic overactivity in Afro-Caribbean hypertensive subjects studied by heart rate variability. J Hum Hypertens 14:337–342. 10.1038/sj.jhh.1001009 10.1038/sj.jhh.1001009 PubMed DOI
Hainsworth R (1998) Physiology of the cardiac autonomic system. In: Malik M (ed) Clinical Guide to Cardiac Autonomic Tests. Kluwer, Dordrecht, pp 3–28
Harteveld LM, Nederend I, Ten Harkel ADJ, Schutte NM, de Rooij SR, Vrijkotte TGM, Oldenhof H, Popma A, Jansen LMC, Suurland J, Swaab H, de Geus EJC, FemNAT-CD collaborators (2021) Maturation of the cardiac autonomic nervous system activity in children and adolescents. J Am Heart Assoc 16:e017405. 10.1161/JAHA.120.01740510.1161/JAHA.120.017405 PubMed DOI PMC
Hinnant JB, Elmore-Staton L, El-Sheikh M (2011) Developmental trajectories of respiratory sinus arrhythmia and preejection period in middle childhood. Dev Psychobiol 53:59–68. 10.1002/dev.20487 10.1002/dev.20487 PubMed DOI PMC
Hnatkova K, Andršová I, Novotný T, Britton A, Shipley M, Vandenberk B, Sprenkeler DJ, Junttila J, Reichlin T, Schlögl S, Vos MA, Friede T, Bauer A, Huikuri HV, Willems R, Schmidt G, Franz MR, Sticherling C, Zabel M, Malik M (2022) QRS micro-fragmentation as a mortality predictor. Eur Heart J 43:4177–4191. 10.1093/eurheartj/ehac085 10.1093/eurheartj/ehac085 PubMed DOI PMC
Hnatkova K, Šišáková M, Smetana P, Toman O, Huster KM, Novotný T, Schmidt G, Malik M (2019) Sex differences in heart rate responses to postural provocations. Int J Cardiol 297:126–134. 10.1016/j.ijcard.2019.09.044 10.1016/j.ijcard.2019.09.044 PubMed DOI PMC
Iwasa Y, Nakayasu K, Nomura M, Nakaya Y, Saito K, Ito S (2005) The relationship between autonomic nervous activity and physical activity in children. Pediatr Int 47:361–371. 10.1111/j.1442-200x.2005.02082.x 10.1111/j.1442-200x.2005.02082.x PubMed DOI
Kautzner J, Hartikainen JE, Camm AJ, Malik M (1996) Arterial baroreflex sensitivity assessed from phase IV of the Valsalva maneuver. Am J Cardiol 78:575–579. 10.1016/s0002-9149(96)00370-0 10.1016/s0002-9149(96)00370-0 PubMed DOI
Köhler BU, Hennig C, Orglmeister R (2019) The principles of software QRS detection. IEEE Eng Med Biol Mag 21:42–57. 10.1109/51.99319310.1109/51.993193 PubMed DOI
Kors JA, Talmon JL, van Bemmel JH (1986) Multilead ECG analysis. Comput Biomed Res 19:28–46. 10.1016/0010-4809(86)90004-2 10.1016/0010-4809(86)90004-2 PubMed DOI
Leicht AS, Hirning DA, Allen GD (2003) Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. Exp Physiol 88:441–446. 10.1113/eph8802535 10.1113/eph8802535 PubMed DOI
Levy MN, Martin PJ, Iano T, Zieske H (1970) Effects of single vagal stimuli on heart rate and atrioventricular conduction. Am J Physiol 218:1256–1262. 10.1152/ajplegacy.1970.218.5.1256 10.1152/ajplegacy.1970.218.5.1256 PubMed DOI
Liu K, Ballew C, Jacobs DR Jr, Sidney S, Savage PJ, Dyer A, Hughes G, Blanton MM (1989) Ethnic differences in blood pressure, pulse rate, and related characteristics in young adults. CARDIA Stud Hypertens 14:218–226. 10.1161/01.hyp.14.2.21810.1161/01.hyp.14.2.218 PubMed DOI
Longin E, Dimitriadis C, Shazi S, Gerstner T, Lenz T, König S (2009) Autonomic nervous system function in infants and adolescents: impact of autonomic tests on heart rate variability. Pediatr Cardiol 30:311–324. 10.1007/s00246-008-9327-8 10.1007/s00246-008-9327-8 PubMed DOI
Mäkikallio TH, Huikuri HV, Hintze U, Videbaek J, Mitrani RD, Castellanos A, Myerburg RJ, Møller M; DIAMOND Study Group (2001) Fractal analysis and time- and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am J Cardiol 87:178–182. 10.1016/s0002-9149(00)01312-6 10.1016/s0002-9149(00)01312-6 PubMed DOI
Malik M, Camm AJ (1993) Components of heart rate variability–what they really mean and what we really measure. Am J Cardiol 72:821–822. 10.1016/0002-149(93)91070-x 10.1016/0002-149(93)91070-x PubMed DOI
Malik M, Hnatkova K, Huikuri HV, Lombardi F, Schmidt G, Zabel M (2019) Rebuttal. J Physiol 597:2603–2604. 10.1113/JP277962 10.1113/JP277962 PubMed DOI PMC
Malik M, Hnatkova K, Huikuri HV, Lombardi F, Schmidt G, Zabel M (2019) CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsiveness. J Physiol 597:2595–2598. 10.1113/JP277500 10.1113/JP277500 PubMed DOI PMC
Malik M, Hnatkova K, Novotny T, Schmidt G (2008) Subject-specific profiles of QT/RR hysteresis. Am J Physiol Heart Circ Physiol 295(6):H2356–H2363. 10.1152/ajpheart.00625.2008 10.1152/ajpheart.00625.2008 PubMed DOI
Malik M, Kulakowski P, Poloniecki J, Staunton A, Odemuyiwa O, Farrell T, Camm J (2019) Frequency versus time domain analysis of signal-averaged electrocardiograms. I. Reproducibility of the results. J Am Coll Cardiol 20:127–134. 10.1016/0735-1097(92)90148-g10.1016/0735-1097(92)90148-g PubMed DOI
Massin M, von Bernuth G (1997) Normal ranges of heart rate variability during infancy and childhood. Pediatr Cardiol 18:297–302. 10.1007/s002469900178 10.1007/s002469900178 PubMed DOI
Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90:1826–1831. 10.1161/01.cir.90.4.1826 10.1161/01.cir.90.4.1826 PubMed DOI
Nagai N, Moritani T (2024) Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord 28:27–33. 10.1038/sj.ijo.080247010.1038/sj.ijo.0802470 PubMed DOI
Nieminen T, Kähönen M, Kööbi T, Nikus K, Viik J (2007) Heart rate variability is dependent on the level of heart rate. Am Heart J 154:e13. 10.1016/j.ahj.2007.04.050 10.1016/j.ahj.2007.04.050 PubMed DOI
Pahlm O, Sornmo L (1984) Software QRS detection in ambulatory monitoring – a review. Med Biol Eng Comput 22:289–297. 10.1007/BF02442095 10.1007/BF02442095 PubMed DOI
Parker P, Celler BG, Potter EK, McCloskey DI (1984) Vagal stimulation and cardiac slowing. J Auton Nerv Syst 11:226–231. 10.1016/0165-1838(84)90080-8 10.1016/0165-1838(84)90080-8 PubMed DOI
Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87. 10.1063/1.166141 10.1063/1.166141 PubMed DOI
Poliakova N, Dionne G, Dubreuil E, Ditto B, Pihl RO, Pérusse D, Tremblay RE, Boivin M (2014) A methodological comparison of the Porges algorithm, fast Fourier transform, and autoregressive spectral analysis for the estimation of heart rate variability in 5-month-old infants. Psychophysiology 51:579–583. 10.1111/psyp.12194 10.1111/psyp.12194 PubMed DOI
Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248:H151–H153. 10.1152/ajpheart.1985.248.1.H151 10.1152/ajpheart.1985.248.1.H151 PubMed DOI
Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R (1985) Montano N (2007) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103:1143–1149. 10.1152/japplphysiol.00293.200710.1152/japplphysiol.00293.2007 PubMed DOI
Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N, Gnecchi-Ruscone T (2007) Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol 293:H702–H708. 10.1152/ajpheart.00006.2007 10.1152/ajpheart.00006.2007 PubMed DOI
Radtke T, Khattab K, Brugger N, Eser P, Saner H, Wilhelm M (2013) High-volume sports club participation and autonomic nervous system activity in children. Eur J Clin Invest 43:821–828. 10.1111/eci.12112 10.1111/eci.12112 PubMed DOI
La Rovere MT, Porta A, Schwartz PJ (2020) Autonomic control of the heart and its clinical impact. Personal Perspect Front Physiol 11:582. 10.3389/fphys.2020.0058210.3389/fphys.2020.00582 PubMed DOI PMC
Ryan SM, Goldberger AL, Pincus SM, Mietus J, Lipsitz LA (1994) Gender- and age-related differences in heart rate dynamics: are women more complex than men? J Am Coll Cardiol 24:1700–1707. 10.1016/0735-1097(94)90177-5 10.1016/0735-1097(94)90177-5 PubMed DOI
Sacha J, Pluta W (2005) Different methods of heart rate variability analysis reveal different correlations of heart rate variability spectrum with average heart rate. J Electrocardiol 38:47–53. 10.1016/j.jelectrocard.2004.09.015 10.1016/j.jelectrocard.2004.09.015 PubMed DOI
Sacha J, Pluta W (2008) Alterations of an average heart rate change heart rate variability due to mathematical reasons. Int J Cardiol 128:444–447. 10.1016/j.ijcard.2007.06.047 10.1016/j.ijcard.2007.06.047 PubMed DOI
Schwartzlow C, Kazamel M (2019) Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr Neurol Neurosci Rep 19:52. 10.1007/s11910-019-0974-3 10.1007/s11910-019-0974-3 PubMed DOI
Seravalle G, Facchetti R, Cappellini C, Annaloro A, Gelfi E, Grassi G (2022) Elevated heart rate as sympathetic biomarker in human obesity. Nutr Metab Cardiovasc Dis 32:2367–2374. 10.1016/j.numecd.2022.07.011 10.1016/j.numecd.2022.07.011 PubMed DOI
Sinnecker D, Dommasch M, Barthel P, Müller A, Dirschinger RJ, Hapfelmeier A, Huster KM, Laugwitz KL, Malik M, Schmidt G (2014) Assessment of mean respiratory rate from ECG recordings for risk stratification after myocardial infarction. J Electrocardiol 47:700–704. 10.1016/j.jelectrocard.2014.04.021 10.1016/j.jelectrocard.2014.04.021 PubMed DOI
Skytioti M, Elstad M (2022) Respiratory sinus arrhythmia is mainly driven by central feedforward mechanisms in healthy humans. Front Physiol 13:768465. 10.3389/fphys.2022.768465 10.3389/fphys.2022.768465 PubMed DOI PMC
Smetana P (2013) Malik M (2013) Sex differences in cardiac autonomic regulation and in repolarisation electrocardiography. Pflugers Arch 465:699–717. 10.1007/s00424-013-1228-x 10.1007/s00424-013-1228-x PubMed DOI
Smetana P, Batchvarov VN, Hnatkova K, Camm AJ, Malik M (2002) Sex differences in repolarization homogeneity and its circadian pattern. Am J Physiol Heart Circ Physiol 282:H1889–H1897. 10.1152/ajpheart.00962.2001 10.1152/ajpheart.00962.2001 PubMed DOI
St John Sutton MG, Marier DL, Oldershaw PJ, Sacchetti R, Gibson DG (1982) Effect of age related changes in chamber size, wall thickness, and heart rate on left ventricular function in normal children. Br Heart J 48:342–351. 10.1136/hrt.48.4.342 10.1136/hrt.48.4.342 PubMed DOI PMC
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065. 10.1161/01.CIR.93.5.1043 10.1161/01.CIR.93.5.1043 PubMed DOI
Victor RG, Seals DR, Mark AL (1987) Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. J Clin Invest 79:508–516. 10.1172/JCI112841 10.1172/JCI112841 PubMed DOI PMC
Voss A, Kurths J, Kleiner HJ, Witt A, Wessel N, Saparin P, Osterziel KJ, Schurath R, Dietz R (1996) The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc Res 31:419–433. 10.1016/S0008-6363(96)00008-9 10.1016/S0008-6363(96)00008-9 PubMed DOI
Voss A, Schroeder R, Truebner S, Goernig M, Figulla HR, Schirdewan A (2007) Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and Poincare plot analysis in risk stratification in patients with dilated cardiomyopathy. Chaos 17:015120. 10.1063/1.2404633 10.1063/1.2404633 PubMed DOI
White DW, Raven PB (2014) Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol 592:2491–2500. 10.1113/jphysiol.2014.271858 10.1113/jphysiol.2014.271858 PubMed DOI PMC