Individually Rate Corrected QTc Intervals in Children and Adolescents
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31427990
PubMed Central
PMC6688657
DOI
10.3389/fphys.2019.00994
Knihovny.cz E-zdroje
- Klíčová slova
- QT/RR hysteresis, QT/RR slope, QTc interval, age, individual QT/RR patterns, sex differences,
- Publikační typ
- časopisecké články MeSH
Accurate evaluation of the appearance of QTc sex differences during childhood and adolescence is intricate. Inter-subject differences of individual QT/RR patterns make generic heart rate corrections inaccurate because of fast resting heart rates in children. The study investigated 527 healthy children and adolescents aged 4-19 years (268 females, 50.9%). All underwent continuous ECG 12-lead monitoring while performing postural changes during a 70-min investigative protocol to obtain QT interval measurements at different heart rates. On average, more than 1200 ECG measurements (QT interval and its 5-min history of preceding RR intervals) were made in each subject. Curvilinear QT/RR regression involving intra-individual correction for QT/RR hysteresis were calculated in each subject. The projection of the QT/RR regressions to the heart rate of 60 beats per minute defined individually corrected QTc intervals. In males, gradual QTc shortening by about 15 ms appeared during the ages of 13-19 years synchronously with the incidence of secondary sex signs (p = 0.016). On the contrary, whilst gradual QTc prolongation by about 10 ms appeared in females, it occurred only during ages 16-19 years and was not related to the incidence of secondary sex signs (p = 0.18). The study also showed that in children and adolescents, linear QT/RR models fit the intra-subject data significantly more closely than the log-linear models (p < 0.001). The study speculates that hormonal shifts during puberty might be directly responsible for the QTc shortening in males but that QTc prolongation in females is likely more complex since it was noted to follow the appearance of secondary sex signs only after a considerable delay.
Zobrazit více v PubMed
Apter D., Räisänen I., Ylöstalo P., Vihko R. (1987). Follicular growth in relation to serum hormonal patterns in adolescent compared with adult menstrual cycles. Fertil. Steril. 47 82–88. 10.1016/s0015-0282(16)49940-1 PubMed DOI
Batchvarov V. N., Ghuran A., Smetana P., Hnatkova K., Harries M., Dilaveris P., et al. (2002). QT-RR relationship in healthy subjects exhibits substantial intersubject variability and high intrasubject stability. Am. J. Physiol. Heart Circ. Physiol. 282 H2356–H2363. PubMed
Franz M. R., Swerdlow C. D., Liem L. B., Schaefer J. (1988). Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J. Clin. Invest. 82 972–979. 10.1172/jci113706 PubMed DOI PMC
Garnett C. E., Zhu H., Malik M., Fossa A. A., Zhang J., Badilini F., et al. (2012). Methodologies to characterize the QT/corrected QT interval in the presence of drug-induced heart rate changes or other autonomic effects. Am. Heart J. 163 912–930. 10.1016/j.ahj.2012.02.023 PubMed DOI
Gravel H., Jacquemet V., Dahdah N., Curnier D. (2018). Clinical applications of QT/RR hysteresis assessment: a systematic review. Ann. Noninvasive Electrocardiol. 23:e12514. 10.1111/anec.12514 PubMed DOI PMC
Harlan W. R., Grillo G. P., Cornoni-Huntley J., Leaverton P. E. (1979). Secondary sex characteristics of boys 12 to 17 years of age: the U.S. health examination survey. J. Pediatr. 95 293–297. PubMed
Harlan W. R., Harlan E. A., Grillo G. P. (1980). Secondary sex characteristics of girls 12 to 17 years of age: the U.S. health examination survey. J. Pediatr. 96 1074–1078. 10.1016/s0022-3476(80)80647-0 PubMed DOI
Hnatkova K., Johannesen L., Vicente J., Malik M. (2017). Heart rate dependency of JT interval sections. J. Electrocardiol. 50 814–824. 10.1016/j.jelectrocard.2017.08.005 PubMed DOI
Hnatkova K., Smetana P., Toman O., Bauer A., Schmidt G., Malik M. (2009). Systematic comparisons of electrocardiographic morphology increase the precision of QT interval measurement. Pacing Clin. Electrophysiol. 32 119–130. 10.1111/j.1540-8159.2009.02185.x PubMed DOI
Hnatkova K., Vicente J., Johannesen L., Garnett C., Stockbridge N., Malik M. (2019). Errors of fixed QT heart rate corrections used in the assessment of drug-induced QTc changes. Front. Physiol. 10:635. 10.3389/fphys.2019.00635 PubMed DOI PMC
Kohler B. U., Henning C., Orglmeister R. (2002). The principles of software QRS detection- Reviewing and comparing algorithms for detecting this important ECG waveform. IEEE Eng. Med. Biol. Mag. 21 42–57. PubMed
Kors J. A., Talmon J. L., van Bemmel J. H. (1986). Multilead ECG analysis. Comput. Biomed. Res. 19 28–46. 10.1016/0010-4809(86)90004-2 PubMed DOI
Kurokawa J., Kodama M., Clancy C. E., Furukawa T. (2016). Sex hormonal regulation of cardiac ion channels in drug-induced QT syndromes. Pharmacol. Ther. 168 23–28. 10.1016/j.pharmthera.2016.09.004 PubMed DOI PMC
Lanfranchi P. A., Shamsuzzaman A. S., Ackerman M. J., Kara T., Jurak P., Wolk R., et al. (2002). Sex-selective QT prolongation during rapid eye movement sleep. Circulation 106 1488–1492. 10.1161/01.cir.0000030183.10934.95 PubMed DOI
Lenton E. A., Landgren B. M., Sexton L., Harper R. (1984). Normal variation in the length of the follicular phase of the menstrual cycle: effect of chronological age. Br. J. Obstet. Gynaecol. 91 681–684. 10.1111/j.1471-0528.1984.tb04830.x PubMed DOI
Linde C., Bongiorni M. G., Birgersdotter-Green U., Curtis A. B., Deisenhofer I., Furokawa T., et al. (2018). Sex differences in cardiac arrhythmia: a consensus document of the european heart rhythm association, endorsed by the heart rhythm society and asia pacific heart rhythm society. Europace 20:1565-1565ao. PubMed
Malik M., Andreas J.-O., Hnatkova K., Hoeckendorff J., Cawello W., Middle W., et al. (2008a). Thorough QT/QTc study in patients with advanced Parkinson’s disease: Cardiac safety of rotigotine. Clin. Pharm. Therap. 84 595–603. 10.1038/clpt.2008.143 PubMed DOI
Malik M., Hnatkova K., Novotný T., Schmidt G. (2008b). Subject-specific profiles of QT/RR hysteresis. Am. J. Physiol. Heart Circ. Physiol. 295 H2356–H2363. 10.1152/ajpheart.00625.2008 PubMed DOI
Malik M., Hnatkova K., Schmidt A., Smetana P. (2008c). Accurately measured and properly heart-rate corrected QTc intervals show little daytime variability. Heart Rhythm 5 1424–1431. 10.1016/j.hrthm.2008.07.023 PubMed DOI
Malik M., Färbom P., Batchvarov V., Hnatkova K., Camm A. J. (2002). Relation between QT and RR intervals is highly individual among healthy subjects: implications for heart rate correction of the QT interval. Heart 87 220–228. 10.1136/heart.87.3.220 PubMed DOI PMC
Malik M., Garnett C., Hnatkova K., Johannesen L., Vicente J., Stockbridge N. (2018). Importance of QT/RR hysteresis correction in studies of drug-induced QTc interval changes. J. Pharmacokinet. Pharmacodyn. 45 491–503. 10.1007/s10928-018-9587-8 PubMed DOI PMC
Malik M., Garnett C., Hnatkova K., Vicente J., Johannesen L., Stockbridge N. (2019). Implications of individual QT/RR profiles - Part 1: Inaccuracies and problems of population-specific QT/heart rate corrections. Drug Saf. 42 401–414. 10.1007/s40264-018-0736-1 PubMed DOI PMC
Malik M., Hnatkova K., Batchvarov V., Gang Y., Smetana P., Camm A. J. (2004). Sample size, power calculations, and their implications for the cost of thorough studies of drug induced QT interval prolongation. Pacing Clin. Electrophysiol. 27 1659–1669. 10.1111/j.1540-8159.2004.00701.x PubMed DOI
Malik M., Hnatkova K., Kowalski D., Keirns J. J., van Gelderen E. M. (2012a). Importance of subject-specific QT/RR curvatures in the design of individual heart rate corrections of the QT interval. J. Electrocardiol. 45 571–581. 10.1016/j.jelectrocard.2012.07.017 PubMed DOI
Malik M., van Gelderen E. M., Lee J. H., Kowalski D. L., Yen M., Goldwater R., et al. (2012b). Proarrhythmic safety of repeat doses of mirabegron in healthy subjects: a randomized, double-blind, placebo-, and active-controlled thorough QT study. Clin. Pharm. Therap. 92 696–706. 10.1038/clpt.2012.181 PubMed DOI
Malik M., Hnatkova K., Kowalski D., Keirns J. J., van Gelderen E. M. (2013). QT/RR curvatures in healthy subjects: sex differences and covariates. Am. J. Physiol. Heart Circ. Physiol. 305 H1798–H1806. 10.1152/ajpheart.00577.2013 PubMed DOI PMC
Malik M., Johannesen L., Hnatkova K., Stockbridge N. (2016). Universal correction for QT/RR hysteresis. Drug Safety 39 577–588. 10.1007/s40264-016-0406-0 PubMed DOI
Mickey E., Brooke R. B. (2019). Tanner Stages. Available at: https://www.ncbi.nlm.nih.gov/books/NBK470280/ (accessed May 13, 2019).
Novotný T., Leinveber P., Hnatkova K., Reichlova T., Matejkova M., Sisakova M., et al. (2014). Pilot study of sex differences in QTc intervals of heart transplant recipients. J. Electrocardiol. 47 863–868. 10.1016/j.jelectrocard.2014.07.015 PubMed DOI
Pahlm O., Sornmo L. (1984). Software QRS detection in ambulatory monitoring – a review. Med. Biol. Eng. Comput. 22 289–297. 10.1007/bf02442095 PubMed DOI
Rautaharju P. M., Mason J. W., Akiyama T. (2014). New age- and sex-specific criteria for QT prolongation based on rate correction formulas that minimize bias at the upper normal limits. Int. J. Cardiol. 174 535–540. 10.1016/j.ijcard.2014.04.133 PubMed DOI
Rautaharju P. M., Zhou S. H., Wong S., Calhoun H. P., Berenson G. S., Prineas R., et al. (1992). Sex differences in the evolution of the electrocardiographic QT interval with age. Can. J. Cardiol. 8 690–695. PubMed
Sarganas G., Schaffrath Rosario A., Neuhauser H. K. (2017). Resting heart rate percentiles and associated factors in children and adolescents. J. Pediatr. 187 174–181. 10.1016/j.jpeds.2017.05.021 PubMed DOI
Smetana P., Malik M. (2013). Sex differences in cardiac autonomic regulation and in repolarisation electrocardiography. Pflugers Arch. 465 699–717. 10.1007/s00424-013-1228-x PubMed DOI
Stramba-Badiale M., Priori S. G., Napolitano C., Locati E. H., Viñolas X., Haverkamp W., et al. (2000). Gene-specific differences in the circadian variation of ventricular repolarization in the long QT syndrome: a key to sudden death during sleep? Ital. Heart J. 1 323–328. PubMed
Spatial distribution of physiologic 12-lead QRS complex
Sex and Rate Change Differences in QT/RR Hysteresis in Healthy Subjects
Problems with Bazett QTc correction in paediatric screening of prolonged QTc interval
Physiologic heart rate dependency of the PQ interval and its sex differences
Sex differences in heart rate responses to postural provocations