Physiologic heart rate dependency of the PQ interval and its sex differences
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NH/16/2/32499
British Heart Foundation - United Kingdom
NH/16/2/32499
British Heart Foundation (BHF) - International
PubMed
32054960
PubMed Central
PMC7018842
DOI
10.1038/s41598-020-59480-8
PII: 10.1038/s41598-020-59480-8
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- dospělí MeSH
- elektrokardiografie ambulantní * MeSH
- elektrokardiografie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- pohlavní dimorfismus MeSH
- převodní systém srdeční fyziologie MeSH
- srdce - funkce síní MeSH
- srdce diagnostické zobrazování fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- určení tepové frekvence metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
On standard electrocardiogram (ECG) PQ interval is known to be moderately heart rate dependent, but no physiologic details of this dependency have been established. At the same time, PQ dynamics is a clear candidate for non-invasive assessment of atrial abnormalities including the risk of atrial fibrillation. We studied PQ heart rate dependency in 599 healthy subjects (aged 33.5 ± 9.3 years, 288 females) in whom drug-free day-time 12-lead ECG Holters were available. Of these, 752,517 ECG samples were selected (1256 ± 244 per subject) to measure PQ and QT intervals and P wave durations. For each measured ECG sample, 5-minute history of preceding cardiac cycles was also obtained. Although less rate dependent than the QT intervals (36 ± 19% of linear slopes), PQ intervals were found to be dependent on underlying cycle length in a highly curvilinear fashion with the dependency significantly more curved in females compared to males. The PQ interval also responded to the heart rate changes with a delay which was highly sex dependent (95% adaptation in females and males after 114.9 ± 81.1 vs 65.4 ± 64.3 seconds, respectively, p < 0.00001). P wave duration was even less rate dependent than the PQ interval (9 ± 10% of linear QT/RR slopes). Rate corrected P wave duration was marginally but significantly shorter in females than in males (106.8 ± 8.4 vs 110.2 ± 7.9 ms, p < 0.00001). In addition to establishing physiologic standards, the study suggests that the curvatures and adaptation delay of the PQ/cycle-length dependency should be included in future non-invasive studies of atrial depolarizations.
Klinikum rechts der Isar Technische Universität München Ismaninger Straße 22 D 81675 Munich Germany
Wilhelminenspital der Stadt Wien Montleartstraße 37 1160 Vienna Austria
Zobrazit více v PubMed
Kutyifa V, et al. PR interval identifies clinical response in patients with non-left bundle branch block: a Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy substudy. Circ. Arrhythm. Electrophysiol. 2014;7:645–651. doi: 10.1161/CIRCEP.113.001299. PubMed DOI
Friedman DJ, et al. Association between a prolonged PR interval and outcomes of cardiac resynchronization therapy: A report from the national cardiovascular data registry. Circulation. 2016;134:1617–1628. doi: 10.1161/CIRCULATIONAHA.116.022913. PubMed DOI PMC
Rickard J, et al. Effect of PR interval prolongation on long-term outcomes in patients with left bundle branch block vs non-left bundle branch block morphologies undergoing cardiac resynchronization therapy. Heart Rhythm. 2017;14:1523–1528. doi: 10.1016/j.hrthm.2017.05.028. PubMed DOI
Nikolaidou T, et al. Prevalence, predictors, and prognostic implications of PR interval prolongation in patients with heart failure. Clin. Res. Cardiol. 2018;107:108–119. doi: 10.1007/s00392-017-1162-6. PubMed DOI PMC
Salden FCWM, Kutyifa V, Stockburger M, Prinzen FW, Vernooy K. Atrioventricular dromotropathy: evidence for a distinctive entity in heart failure with prolonged PR interval? Europace. 2018;20:1067–1077. doi: 10.1093/europace/eux207. PubMed DOI
Rasmussen PV, et al. Electrocardiographic PR interval duration and cardiovascular risk: Results from the Copenhagen ECG study. Can. J. Cardiol. 2017;33:674–681. doi: 10.1016/j.cjca.2017.02.015. PubMed DOI
Aro AL, et al. Prognostic significance of prolonged PR interval in the general population. Eur. Heart J. 2014;35:123–129. doi: 10.1093/eurheartj/eht176. PubMed DOI
Bidstrup S, Salling Olesen M, Hastrup Svendsen J, Bille Nielsen J. Role of PR-interval in predicting the occurrence of atrial fibrillation. J. Atr. Fibrillation. 2013;6:956. PubMed PMC
Park J, et al. Prolonged PR interval predicts clinical recurrence of atrial fibrillation after catheter ablation. J. Am. Heart Assoc. 2014;3:e001277. doi: 10.1161/JAHA.114.001277. PubMed DOI PMC
Schumacher K, et al. Characteristics of PR interval as predictor for atrial fibrillation: association with biomarkers and outcomes. Clin. Res. Cardiol. 2017;106:767–775. doi: 10.1007/s00392-017-1109-y. PubMed DOI
Boriani G, et al. Effect of PR interval and pacing mode on persistent atrial fibrillation incidence in dual chamber pacemaker patients: a sub-study of the international randomized MINERVA trial. Europace. 2019;21:636–644. doi: 10.1093/europace/euy286. PubMed DOI
Hari KJ, Nguyen TP, Soliman EZ. Relationship between P-wave duration and the risk of atrial fibrillation. Expert. Rev. Cardiovasc. Ther. 2018;16:837–843. doi: 10.1080/14779072.2018.1533814. PubMed DOI
Conte G, et al. Usefulness of P-wave duration and morphologic variability to identify patients prone to paroxysmal atrial fibrillation. Am. J. Cardiol. 2017;119:275–279. doi: 10.1016/j.amjcard.2016.09.043. PubMed DOI
Oliveira M, et al. Effects of acute autonomic modulation on atrial conduction delay and local electrograms duration in paroxysmal atrial fibrillation. Int. J. Cardiol. 2011;149:290–295. doi: 10.1016/j.ijcard.2010.02.006. PubMed DOI
Dilaveris PE, Färbom P, Batchvarov V, Ghuran A, Malik M. Circadian behavior of P-wave duration, P-wave area, and PR interval in healthy subjects. Ann. Noninvasive Electrocardiol. 2001;6:92–97. doi: 10.1111/j.1542-474X.2001.tb00092.x. PubMed DOI PMC
Soliman EZ, Rautaharju PM. Heart rate adjustment of PR interval in middle-aged and older adults. J. Electrocardiol. 2012;45:66–69. doi: 10.1016/j.jelectrocard.2011.06.003. PubMed DOI
Kališnik JM, et al. Cardiac autonomic regulation and PR interval determination for enhanced atrial fibrillation risk prediction after cardiac surgery. Int. J. Cardiol. 2019;289:24–29. doi: 10.1016/j.ijcard.2019.04.070. PubMed DOI
Malik M, Hnatkova K, Sisakova M, Schmidt G. Subject-specific heart rate dependency of electrocardiographic QT, PQ, and QRS intervals. J. Electrocardiol. 2008;41:491–497. doi: 10.1016/j.jelectrocard.2008.06.022. PubMed DOI
ICH Guideline Safety pharmacology studies for human pharmaceuticals S7A. Fed. Regist. 2001;66:36791–36792. PubMed
Malik M, et al. Proarrhythmic safety of repeat doses of mirabegron in healthy subjects: a randomized, double-blind, placebo-, and active-controlled thorough QT study. Clin. Pharm. Therap. 2012;92:696–706. doi: 10.1038/clpt.2012.181. PubMed DOI
Hnatkova K, et al. Systematic comparisons of electrocardiographic morphology increase the precision of QT interval measurement. Pacing Clin. Electrophysiol. 2009;32:119–130. doi: 10.1111/j.1540-8159.2009.02185.x. PubMed DOI
Malik M, Hnatkova K, Kowalski D, Keirns JJ, van Gelderen EM. QT/RR curvatures in healthy subjects: sex differences and covariates. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H1798–H1806. doi: 10.1152/ajpheart.00577.2013. PubMed DOI PMC
Malik M, Hnatkova K, Novotny T, Schmidt G. Subject-specific profiles of QT/RR hysteresis. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H2356–H2363. doi: 10.1152/ajpheart.00625.2008. PubMed DOI
Gravel Hugo, Jacquemet Vincent, Dahdah Nagib, Curnier Daniel. Clinical applications of QT/RR hysteresis assessment: A systematic review. Annals of Noninvasive Electrocardiology. 2017;23(1):e12514. doi: 10.1111/anec.12514. PubMed DOI PMC
Malik M, Johannesen L, Hnatkova K, Stockbridge N. Universal correction for QT/RR hysteresis. Drug. Saf. 2016;39:577–588. doi: 10.1007/s40264-016-0406-0. PubMed DOI
Extramiana F, et al. Clinical assessment of drug-induced QT prolongation in association with heart rate changes. Clin. Pharmacol. Ther. 2005;77:247–58. doi: 10.1016/j.clpt.2004.10.016. PubMed DOI
Malik M, Hnatkova K, Kowalski D, Keirns JJ, van Gelderen EM. ICH E14-compatible Holter bin method and its equivalence to individual heart rate correction in the assessment of drug-induced QT changes. J. Cardiovasc. Electrophysiol. 2014;25:1232–1241. doi: 10.1111/jce.12450. PubMed DOI
Linde C, et al. Sex differences in cardiac arrhythmia: a consensus document of the European Heart Rhythm Association, endorsed by the Heart Rhythm Society and Asia Pacific Heart Rhythm Society. Europace. 2018;20:1565–1565ao. doi: 10.1093/europace/euy067. PubMed DOI
Renoux C, Patenaude V, Suissa S. Incidence, mortality, and sex differences of non-valvular atrial fibrillation: a population-based study. J. Am. Heart Assoc. 2014;3:e001402. doi: 10.1161/JAHA.114.001402. PubMed DOI PMC
Brunetti ND, et al. Incidence of atrial fibrillation is associated with age and gender in subjects practicing physical exercise: A meta-analysis and meta-regression analysis. Int. J. Cardiol. 2016;221:1056–1060. doi: 10.1016/j.ijcard.2016.07.133. PubMed DOI
Yiin GS, et al. Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: a population-based study. Circulation. 2014;130:1236–1244. doi: 10.1161/CIRCULATIONAHA.114.010942. PubMed DOI PMC
Amin AS, Tan HL, Wilde AA. Cardiac ion channels in health and disease. Heart Rhythm. 2010;7:117–126. doi: 10.1016/j.hrthm.2009.08.005. PubMed DOI
Andršová I, et al. Individually rate corrected QTc intervals in children and adolescents. Front. Physiol. 2019;10:994. doi: 10.3389/fphys.2019.00994. PubMed DOI PMC
Smetana P, Malik M. Sex differences in cardiac autonomic regulation and in repolarisation electrocardiography. Pflug. Arch. 2013;465:699–717. doi: 10.1007/s00424-013-1228-x. PubMed DOI
Halámek J, et al. Use of a novel transfer function to reduce repolarization interval hysteresis. J. Interv. Card. Electrophysiol. 2010;29:23–32. doi: 10.1007/s10840-010-9500-x. PubMed DOI
Malik M. QT/RR hysteresis. J. Electrocardiol. 2014;47:236–239. doi: 10.1016/j.jelectrocard.2014.01.002. PubMed DOI
Vernooy K, van Deursen CJ, Strik M, Prinzen FW. Strategies to improve cardiac resynchronization therapy. Nat. Rev. Cardiol. 2014;11:481–493. doi: 10.1038/nrcardio.2014.67. PubMed DOI
Jacquemet V, et al. Evaluation of a subject-specific transfer-function-based nonlinear QT interval rate-correction method. Physiol. Meas. 2011;32:619–635. doi: 10.1088/0967-3334/32/6/001. PubMed DOI
Cassani González R, et al. Assessment of the sensitivity of detecting drug-induced QTc changes using subject-specific rate correction. J. Electrocardiol. 2012;45:541–545. doi: 10.1016/j.jelectrocard.2012.07.004. PubMed DOI
Garnett CE, et al. Methodologies to characterize the QT/corrected QT interval in the presence of drug-induced heart rate changes or other autonomic effects. Am. Heart J. 2012;163:912–930. doi: 10.1016/j.ahj.2012.02.023. PubMed DOI
Pfaffenberger S, et al. Size matters! Impact of age, sex, height, and weight on the normal heart size. Circ. Cardiovasc. Imaging. 2013;6:1073–1079. doi: 10.1161/CIRCIMAGING.113.000690. PubMed DOI