Heart Rate Dependency and Inter-Lead Variability of the T Peak - T End Intervals
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
NH/16/2/32499
British Heart Foundation - United Kingdom
PubMed
33384609
PubMed Central
PMC7769826
DOI
10.3389/fphys.2020.595815
Knihovny.cz E-zdroje
- Klíčová slova
- ECG lead comparison, T wave peak, T wave spatial loop, heart rate dependency, sex differences,
- Publikační typ
- časopisecké články MeSH
The electrocardiographic (ECG) assessment of the T peak-T end (Tpe) intervals has been used in many clinical studies, but several related physiological aspects have not been reported. Specifically, the sources of the Tpe differences between different ECG leads have not been systematically researched, the relationship of Tpe duration to underlying heart rate has not been firmly established, and little is known about the mutual correspondence of Tpe intervals measured in different ECG leads. This study evaluated 796,620 10-s 12-lead ECGs obtained from long-term Holters recorded in 639 healthy subjects (311 female) aged 33.8 ± 9.4 years. For each ECG, transformation to orthogonal XYZ lead was used to measure Tpe in the orthogonal vector magnitude (used as a reference for lead-to-lead comparisons) and to construct a three-dimensional T wave loop. The loop roundness was expressed by a ratio between its circumference and length. These ratios were significantly related to the standard deviation of Tpe durations in different ECG leads. At the underlying heart rate of 60 beats per minute, Tpe intervals were shorter in female than in male individuals (82.5 ± 5.6 vs 90.0 ± 6.5 ms, p < 0.0001). When studying linear slopes between Tpe intervals measured in different leads and the underlying heart rate, we found only minimal heart rate dependency, which was not systematic across the ECG leads and/or across the population. For any ECG lead, positive Tpe/RR slope was found in some subjects (e.g., 79 and 25% of subjects for V2 and V4 measurements, respectively) and a negative Tpe/RR slope in other subjects (e.g., 40 and 65% for V6 and V5, respectively). The steepest positive and negative Tpe/RR slopes were found for measurements in lead V2 and V4, respectively. In all leads, the Tpe/RR slope values were close to zero, indicating, on average, Tpe changes well below 2 ms for RR interval changes of 100 ms. On average, longest Tpe intervals were measured in lead V2, the shortest in lead III. The study concludes that the Tpe intervals measured in different leads cannot be combined. Irrespective of the measured ECG lead, the Tpe interval is not systematically heart rate dependent, and no heart rate correction should be used in clinical Tpe investigations.
Klinikum rechts der Isar Technische Universität München Munich Germany
National Heart and Lung Institute Imperial College London London United Kingdom
Zobrazit více v PubMed
Acar B., Köymen H. (1999). SVD-based on-line exercise ECG signal orthogonalization. IEEE Trans. Biomed. Eng. 46 311–321. 10.1109/10.748984 PubMed DOI
Acar B., Yi G., Hnatkova K., Malik M. (1999). Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Med. Biol. Eng. Comput. 37 574–584. 10.1007/bf02513351 PubMed DOI
Antzelevitch C. (2008). Drug-induced spatial dispersion of repolarization. Cardiol. J. 15 100–121. PubMed PMC
Antzelevitch C., Di Diego J. M. (2019). Tpeak-Tend interval as a marker of arrhythmic risk. Heart Rhythm. 16 954–955.10.1016/j.hrthm.2019.01.017 PubMed DOI PMC
Batchvarov V., Hnatkova K., Malik M. (2002). Assessment of noise in digital electrocardiograms. Pacing Clin. Electrophysiol. 25 499–503. 10.1046/j.1460-9592.2002.00499.x PubMed DOI
Böhm M., Schumacher H., Teo K. K., Lonn E. M., Mahfoud F., Ukena C., et al. (2020). Resting heart rate and cardiovascular outcomes in diabetic and non-diabetic individuals at high cardiovascular risk analysis from the ONTARGET/TRANSCEND trials. Eur. Heart J. 41 231–238. 10.1093/eurheartj/ehy808 PubMed DOI
Chua K. C., Rusinaru C., Reinier K., Uy-Evanado A., Chugh H., Gunson K., et al. (2016). Tpeak-to-Tend interval corrected for heart rate: a more precise measure of increased sudden death risk? Heart Rhythm. 13 2181–2185. 10.1016/j.hrthm.2016.08.022 PubMed DOI PMC
Copie X., Hnatkova K., Staunton A., Fei L., Camm A. J., Malik M. (1996). Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J. Am. Coll. Cardiol. 27 270–276. 10.1016/0735-1097(95)00454-8 PubMed DOI
Damen A. A., van der Kam J. (1982). The use of the singular value decomposition in electrocardiography. Med. Biol. Eng. Comput. 20 473–482. 10.1007/bf02442409 PubMed DOI
Day C. P., McComb L. M., Campbell R. W. F. (1990). QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. Br. Heart J. 63 342–344. 10.1136/hrt.63.6.342 PubMed DOI PMC
Edenbrandt L., Pahlm O. (1988). Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. J. Electrocardiol. 21 361–367. 10.1016/0022-0736(88)90113-6 PubMed DOI
El-Sherif N., Myerburg R. J., Scherlag B. J., Befeler B., Aranda J. M., Castellanos A., et al. (1976). Electrocardiographic antecedents of primary ventricular fibrillation. Value of the R-on-T phenomenon in myocardial infarction. Br. Heart J. 38 415–422. 10.1136/hrt.38.4.415 PubMed DOI PMC
Fenichel R. R., Malik M., Antzelevitch C., Sanguinetti M., Roden D. M., Priori S. G., et al. (2004). Drug-induced Torsades de Pointes and implications for drug development. J. Cardiovasc. Electrophysiol. 15 475–495. PubMed PMC
Garnett C. E., Zhu H., Malik M., Fossa A. A., Zhang J., Badilini F., et al. (2012). Methodologies to characterize the QT/corrected QT interval in the presence of drug-induced heart rate changes or other autonomic effects. Am. Heart J. 163 912–930. 10.1016/j.ahj.2012.02.023 PubMed DOI
Gravel H., Jacquemet V., Dahdah N., Curnier D. (2018). Clinical applications of QT/RR hysteresis assessment: a systematic review. Ann. Noninvasive Electrocardiol. 23 e12514. 10.1111/anec.12514 PubMed DOI PMC
Guideline I. C. H. (2001). Safety pharmacology studies for human pharmaceuticals S7A. Fed. Regist. 66 36791–36792. PubMed
Guldenring D., Finlay D. D., Strauss D. G., Galeotti L., Nugent C. D., Donnelly M. P., et al. (2012). Transformation of the Mason-Likar 12-lead electrocardiogram to the Frank vectorcardiogram. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 677–680. PubMed
Halámek J., Jurák P., Bunch T. J., Lipoldová J., Novák M., Vondra V., et al. (2010). Use of a novel transfer function to reduce repolarization interval hysteresis. J. Interv. Card Electrophysiol. 29 23–32.10.1007/s10840-010-9500-x PubMed DOI
Hasan M. A., Abbott D., Baumert M. (2012). Beat-to-beat vectorcardiographic analysis of ventricular depolarization and repolarization in myocardial infarction. PLoS One 7:e49489 10.1371/journal.pone.0049489 PubMed DOI PMC
Hnatkova K., Smetana P., Toman O., Bauer A., Schmidt G., Malik M. (2009). Systematic comparisons of electrocardiographic morphology increase the precision of QT interval measurement. Pacing Clin. Electrophysiol. 32 119–130. 10.1111/j.1540-8159.2009.02185.x PubMed DOI
Hnatkova K., Vicente J., Johannesen L., Garnett C., Strauss D. G., Stockbridge N., et al. (2019a). Detection of T wave peak for serial comparisons of JTp interval. Front. Physiol. 10:934. 10.3389/fphys.2019.00934 PubMed DOI PMC
Hnatkova K., Vicente J., Johannesen L., Garnett C., Strauss D. G., Stockbridge N., et al. (2019b). Heart rate correction of the J-to-Tpeak interval. Sci. Rep. 9:15060. 10.1038/s41598-019-51491-4 PubMed DOI PMC
Huang H. C., Lin L. Y., Yu H. Y., Ho Y. L. (2009). Risk stratification by T-wave morphology for cardiovascular mortality in patients with systolic heart failure. Europace 11 1522–1528. 10.1093/europace/eup294 PubMed DOI
Johannesen L., Vicente J., Hosseini M., Strauss D. G. (2016). Automated algorithm for J-Tpeak and Tpeak-Tend assessment of drug-induced proarrhythmia risk. PLoS One 11:e0166925. 10.1371/journal.pone.0166925 PubMed DOI PMC
Johannesen L., Vicente J., Mason J. W., Sanabria C., Waite-Labott K., Hong M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clin. Pharmacol. Ther. 96 549–558. 10.1038/clpt.2014.155 PubMed DOI
Kors J. A., van Herpen G. (1998). Measurement error as a source of QT dispersion: a computerised analysis. Heart 80 453–458.10.1136/hrt.80.5.453 PubMed DOI PMC
Kors J. A., van Herpen G., Sittig A. C., van Bemmel J. H. (1990). Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur. Heart J. 11 1083–1092. 10.1093/oxfordjournals.eurheartj.a059647 PubMed DOI
Kors J. A., van Herpen G., van Bemmel J. H. (1999). QT dispersion. Circulation 99 1458–1463. PubMed
Malik M. (2004). Errors and misconceptions in ECG measurement used for the detection of drug induced QT interval prolongation. J. Electrocardiol. 37(Suppl.) 25–33. 10.1016/j.jelectrocard.2004.08.005 PubMed DOI
Malik M., Acar B., Gang Y., Yap Y. G., Hnatkova K., Camm A. J. (2000). QT dispersion does not represent electrocardiographic interlead heterogeneity of ventricular repolarization. J. Cardiovasc. Electrophysiol. 11 835–843. 10.1111/j.1540-8167.2000.tb00061.x PubMed DOI
Malik M., Andreas J.-O., Hnatkova K., Hoeckendorff J., Cawello W., Middle M., et al. (2008a). Thorough QT/QTc study in patients with advanced Parkinson’s disease: cardiac safety of rotigotine. Clin. Pharmacol. Ther. 84 595–603. 10.1038/clpt.2008.143 PubMed DOI
Malik M., Batchvarov V. N. (2000). Measurement, interpretation, and clinical potential of QT dispersion. J. Am. Coll. Cardiol. 36 1749–1766. 10.1016/s0735-1097(00)00962-1 PubMed DOI
Malik M., Camm A. J. (1997). Mystery of QTc interval dispersion. Am. J. Cardiol. 79 785–787. PubMed
Malik M., Hnatkova K., Kowalski D., Keirns J. J., van Gelderen E. M. Q. T. (2013). /RR curvatures in healthy subjects: sex differences and covariates. Am. J. Physiol. Heart Circ. Physiol. 305 H1798–H1806. PubMed PMC
Malik M., Hnatkova K., Novotny T., Schmidt G. (2008b). Subject-specific profiles of QT/RR hysteresis. Am. J. Physiol. Heart Circ. Physiol. 295 H2356–H2363. PubMed
Malik M., Huikuri H., Lombardi F., Schmidt G., Zabel M. (2018). Conundrum of the Tpeak-Tend interval. J. Cardiovasc. Electrophysiol. 29 767–770. 10.1111/jce.13474 PubMed DOI
Malik M., Johannesen L., Hnatkova K., Stockbridge N. (2016). Universal correction for QT/RR hysteresis. Drug Saf. 39 577–588.10.1007/s40264-016-0406-0 PubMed DOI
Malik M., van Gelderen E. M., Lee J. H., Kowalski D. L., Yen M., Goldwater R., et al. (2012). Proarrhythmic safety of repeat doses of mirabegron in healthy subjects: a randomized, double-blind, placebo-, and active-controlled thorough QT study. Clin Pharm. Therap. 92 696–706.10.1038/clpt.2012.181 PubMed DOI
Mozos I., Filimon L. (2013). QT and Tpeak-Tend intervals in shift workers. J. Electrocardiol. 46 60–65. 10.1016/j.jelectrocard.2012.10.014 PubMed DOI
Okin P. M., Devereux R. B., Howard B. V., Fabsitz R. R., Lee E. T., Welty T. K. (2000). Assessment of QT interval and QT dispersion for prediction of all-cause and cardiovascular mortality in American Indians. The Strong Heart Study. Circulation 101 61–66. 10.1161/01.cir.101.1.61 PubMed DOI
Rautaharju P. M. (1999). QT and dispersion of ventricular repolarization: the greatest fallacy in electrocardiography in the 1990s. Circulation 18 2477–2478. PubMed
Rautaharju P. M. (2002). Why did QT dispersion die? Card Electrophysiol. Rev. 6 295–301. PubMed
Seegers J., Hnatkova K., Friede T., Malik M., Zabel M. (2017). T-wave loop area from a pre-implant 12-lead ECG is associated with appropriate ICD shocks. PLoS One 12:e0173868 10.1371/journal.pone.0173868 PubMed DOI PMC
Shenthar J., Deora S., Rai M., Nanjappa Manjunath C. (2015). Prolonged Tpeak-end and Tpeak-end/QT ratio as predictors of malignant ventricular arrhythmias in the acute phase of ST-segment elevation myocardial infarction: a prospective case-control study. Heart Rhythm. 12 484–489. 10.1016/j.hrthm.2014.11.034 PubMed DOI
Sicouri S., Antzelevitch C. (1991). A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res. 68 1729–1741. 10.1161/01.res.68.6.1729 PubMed DOI
Smetana P., Schmidt A., Zabel M., Hnatkova K., Franz M., Huber K., et al. (2011). Assessment of repolarization heterogeneity for prediction of mortality in cardiovascular disease: peak to the end of the T wave interval and nondipolar repolarization components. J. Electrocardiol. 44 301–308. 10.1016/j.jelectrocard.2011.03.004 PubMed DOI
Toman O., Hnatkova K., Smetana P., Huster K. M., Šišáková M., Barthel P., et al. (2020). Physiologic heart rate dependency of the PQ interval and its sex differences. Sci. Rep. 10:2551. 10.1038/s41598-020-59480-8 PubMed DOI PMC
Tse G., Gong M., Wong W. T., Georgopoulos S., Letsas K. P., Vassiliou V. S., et al. (2017). The Tpeak - Tend interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: a systematic review and meta-analysis. Heart Rhythm. 14 1131–1137. PubMed
Vicente J., Hosseini M., Johannesen L., Strauss D. G. (2017). Electrocardiographic biomarkers to confirm drug’s electrophysiological effects used for proarrhythmic risk prediction under CiPA. J. Electrocardiol. 50 808–813. 10.1016/j.jelectrocard.2017.08.003 PubMed DOI
Xue J. Q. (2009). Robust QT interval estimation - from algorithm to validation. Ann. Noninvasive Electrocardiol. 14(Suppl. 1) S35–S41. PubMed PMC
Yu Z., Chen Z., Wu Y., Chen R., Li M., Chen X., et al. (2018). Electrocardiographic parameters effectively predict ventricular tachycardia/fibrillation in acute phase and abnormal cardiac function in chronic phase of ST-segment elevation myocardial infarction. J. Cardiovasc. Electrophysiol. 29 756–766. 10.1111/jce.13453 PubMed DOI
Zareba W. (2006). Genotype-specific ECG patterns in long QT syndrome. J. Electrocardiol. 39 S101–S106. PubMed