A novel adaptive FOCV algorithm with robust IMRAC control for sustainable and high-efficiency MPPT in standalone PV systems: experimental validation and performance assessment

. 2024 Dec 30 ; 14 (1) : 31962. [epub] 20241230

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39738769
Odkazy

PubMed 39738769
PubMed Central PMC11685883
DOI 10.1038/s41598-024-83512-2
PII: 10.1038/s41598-024-83512-2
Knihovny.cz E-zdroje

This paper introduces an innovative, adaptive Fractional Open-Circuit Voltage (FOCV) algorithm combined with a robust Improved Model Reference Adaptive Controller (IMRAC) for Maximum Power Point Tracking (MPPT) in standalone photovoltaic (PV) systems. The proposed two-stage control strategy enhances energy efficiency, simplifies system operation, and addresses limitations in conventional MPPT methods, such as slow convergence, high oscillations, and susceptibility to environmental fluctuations. The first stage dynamically estimates the Maximum Power Point (MPP) voltage using a novel adaptive FOCV method, which eliminates the need for irradiance sensors or physical disconnection of PV modules. This stage incorporates a real-time adjustment of the kv factor based on variations in PV power, ensuring precise voltage estimation. In the second stage, the IMRAC controller ensures accurate tracking of the MPP by adapting swiftly to changes in irradiance and temperature, while minimizing ripple and power loss. Validation of the proposed system was carried out using Processor-in-the-Loop (PIL) testing on an Arduino Due microcontroller, showcasing real-world applicability. Comparative analysis with state-of-the-art MPPT controllers, including P&O-PI, InC-SMC, FLC, and VS P&O Backstepping, demonstrates superior tracking efficiency exceeding 99.49% under EN 50,530 standard test conditions. The system also maintains exceptional performance with minimal efficiency loss across a wide range of temperature and irradiance variations. By combining simplicity, robustness, and sustainability, this work establishes a cutting-edge solution for standalone PV systems, paving the way for more efficient and reliable renewable energy applications.

Zobrazit více v PubMed

Kandemir, E., Cetin, N. S. & Borekci, S. A comprehensive overview of maximum power extraction methods for PV systems. Renew. Sustain. Energy Rev.78(March 2016), 93–112. 10.1016/j.rser.2017.04.090 (2017).

Harrison, A., Feudjio, C., Raoul Fotso Mbobda, C. & Alombah, N. H. A new framework for improving MPPT algorithms through search space reduction. Results Eng.22(December 2023), 101998. 10.1016/j.rineng.2024.101998 (2024).

Harrison, A., Alombah, N. H. & de Dieu Nguimfack Ndongmo, J. A new hybrid MPPT based on incremental conductance-integral backstepping controller applied to a PV system under fast-changing operating conditions. Int. J. Photoenergy10.1155/2023/9931481 (2023).

Belghiti, H. et al. Efficient and robust control of a standalone PV-storage system: An integrated single sensor-based nonlinear controller with TSCC-battery management. J. Energy Storage95(May), 112630. 10.1016/j.est.2024.112630 (2024).

Motahhir, S., El Hammoumi, A. & El Ghzizal, A. Corrigendum to ‘Photovoltaic system with quantitative comparative between an improved MPPT and existing INC and P&O methods under fast varying of solar irradiation’ (Energy Reports (2018) 4 (341–350), (S2352484717302998), (10.1016/j.egyr.2018.04.003)). Energy Rep.5, 1658. 10.1016/j.egyr.2019.10.046 (2019).

Ali, A. I. M., Sayed, M. A. & Mohamed, E. E. M. Modified efficient perturb and observe maximum power point tracking technique for grid-tied PV system. Int. J. Electr. Power Energy Syst.99(June 2017), 192–202. 10.1016/j.ijepes.2017.12.029 (2018).

Alik, R. & Jusoh, A. Modified perturb and observe (P&O) with checking algorithm under various solar irradiation. Sol. Energy148, 128–139. 10.1016/j.solener.2017.03.064 (2017).

Abdel-Salam, M., El-Mohandes, M. T. & Goda, M. An improved perturb-and-observe based MPPT method for PV systems under varying irradiation levels. Sol. Energy171(February), 547–561. 10.1016/j.solener.2018.06.080 (2018).

Ahmed, J. & Salam, Z. An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Appl. Energy150, 97–108. 10.1016/j.apenergy.2015.04.006 (2015).

Mohammadinodoushan, M. et al. A new MPPT design using variable step size perturb and observe method for PV system under partially shaded conditions by modified shuffled frog leaping algorithm—SMC controller. Sustain. Energy Technol. Assess.10.1016/j.seta.2021.101056 (2021).

Hadji, S., Gaubert, J. P. & Krim, F. Experimental analysis of genetic algorithms based MPPT for PV systems. In Proceedings of 2014 International Renewable and Sustainable Energy Conference (IRSEC 2014) 7–12. 10.1109/IRSEC.2014.7059887 (2014).

Refaat, A. et al. Extraction of maximum power from PV system based on horse herd optimization MPPT technique under various weather conditions. Renew. Energy10.1016/j.renene.2023.119718 (2024).

Aguila-Leon, J., Vargas-Salgado, C., Chiñas-Palacios, C. & Díaz-Bello, D. Solar photovoltaic maximum power point tracking controller optimization using grey wolf optimizer: A performance comparison between bio-inspired and traditional algorithms. Expert Syst. Appl.10.1016/j.eswa.2022.118700 (2023).

Swetha, K. T., Reddy, V. & Robinson, A. An innovative grey wolf optimizer with Nelder–mead search method based MPPT technique for fast convergence under partial shading conditions. Sustain. Energy Technol. Assess.59(July), 103412. 10.1016/j.seta.2023.103412 (2023).

Xia, K., Li, Y. & Zhu, B. Improved photovoltaic MPPT algorithm based on ant colony optimization and fuzzy logic under conditions of partial shading. IEEE Access12(March), 44817–44825. 10.1109/ACCESS.2024.3381345 (2024).

Titri, S., Larbes, C., Toumi, K. Y. & Benatchba, K. A new MPPT controller based on the Ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl. Soft Comput. J.58, 465–479. 10.1016/j.asoc.2017.05.017 (2017).

Li, H., Yang, D., Su, W., Lu, J. & Yu, X. An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Trans. Ind. Electron.66(1), 265–275. 10.1109/TIE.2018.2829668 (2019).

Eltamaly, A. M., Al-Saud, M. S., Abokhalil, A. G. & Farh, H. M. H. Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading. Renew. Sustain. Energy Rev.124(February), 2020. 10.1016/j.rser.2020.109719 (2019).

Refaat, A. et al. A novel metaheuristic MPPT technique based on enhanced autonomous group particle swarm optimization algorithm to track the GMPP under partial shading conditions—experimental validation. Energy Convers. Manag.287(May), 117124. 10.1016/j.enconman.2023.117124 (2023).

Priyadarshi, N., Padmanaban, S., Holm-Nielsen, J. B., Blaabjerg, F. & Bhaskar, M. S. An experimental estimation of hybrid ANFIS-PSO-Based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst. J.14(1), 1218–1229. 10.1109/JSYST.2019.2949083 (2020).

Tey, K. S. et al. Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation. IEEE Trans. Ind. Inform.14(10), 4322–4333. 10.1109/TII.2018.2793210 (2018).

Zaki Diab, A. A. & Rezk, H. Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system. Sol. Energy157, 171–186. 10.1016/j.solener.2017.08.024 (2017).

Priyadarshi, N., Bhaskar, M. S. & Almakhles, D. A novel hybrid whale optimization algorithm differential evolution algorithm-based maximum power point tracking employed wind energy conversion systems for water pumping applications: practical realization. IEEE Trans. Ind. Electron.71(2), 1641–1652. 10.1109/TIE.2023.3260345 (2024).

Aihua, G., Yihan, X. & Rezvani, A. Performance improvement of maximum power point tracking for photovoltaic system using grasshopper optimization algorithm based ANFIS under different conditions. Optik (Stuttg)270(September), 169965. 10.1016/j.ijleo.2022.169965 (2022).

Subramanian, A. & Raman, J. Grasshopper optimization algorithm tuned maximum power point tracking for solar photovoltaic systems. J. Ambient Intell. Humaniz. Comput.12(9), 8637–8645. 10.1007/s12652-020-02593-9 (2021).

Belghiti, H., Kandoussi, K., Harrison, A., Moustaine, F. Z. & Sadek, E. M. Simplified control algorithm for stable and efficient standalone PV systems: An assessment based on real climatic conditions. Comput. Electr. Eng.10.1016/j.compeleceng.2024.109695 (2024).

Priyadarshi, N., Bhaskar, M. S., Almakhles, D. & Azam, F. A new PV Fed high gain boost Ćukconverter employed SRM driven water pumping scheme with IDEPSO MPPT. IEEE Trans. Power Electron.40(1), 2371–2384. 10.1109/TPEL.2024.3459810 (2025).

Tao, H. et al. A novel MPPT controller in PV systems with hybrid whale optimization-PS algorithm based ANFIS under different conditions. Control Eng. Pract.112(March), 104809. 10.1016/j.conengprac.2021.104809 (2021).

Balachandran, P. K. et al. Attainment of SDGs through the advancement in solar PV systems. Front. Energy Res.12, 1451373 (2024).

Rekioua, D. et al. Effective optimal control of a wind turbine system with hybrid energy storage and hybrid MPPT approach. Sci. Rep.14, 30013. 10.1038/s41598-024-78847-9 (2024). PubMed PMC

Abdelmalek, F. et al. Experimental validation of effective zebra optimization algorithm-based MPPT under partial shading conditions in photovoltaic systems. Sci. Rep.14, 26047. 10.1038/s41598-024-77488-2 (2024). PubMed PMC

Bouguerra, A. et al. Enhancing PEM fuel cell efficiency with flying squirrel search optimization and cuckoo search MPPT techniques in dynamically operating environments. Sci. Rep.14, 13946. 10.1038/s41598-024-64915-7 (2024). PubMed PMC

Rekioua, D. et al. Coordinated power management strategy for reliable hybridization of multi-source systems using hybrid MPPT algorithms. Sci. Rep.14, 10267. 10.1038/s41598-024-60116-4 (2024). PubMed PMC

Zaghba, L. et al. Enhancing grid-connected photovoltaic system performance with novel hybrid MPPT technique in variable atmospheric conditions. Sci. Rep.14, 8205. 10.1038/s41598-024-59024-4 (2024). PubMed PMC

Deghfel, N. et al. A new intelligently optimized model reference adaptive controller using GA and WOA-based MPPT techniques for photovoltaic systems. Sci. Rep.14, 6827. 10.1038/s41598-024-57610-0 (2024). PubMed PMC

Hamed, S. B. et al. A robust MPPT approach based on first-order sliding mode for triple-junction photovoltaic power system supplying electric vehicle. Energy Rep.9, 4275–4297 (2023).

Belmadani, H. et al. Guided Seagull Optimization for Improved PV MPPT in Partial Shading. In 2023 IEEE 3rd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC), Bhubaneswar, India 1–5. 10.1109/AESPC59761.2023.10390053 (2023).

Kalaiarasi, N. et al. Performance evaluation of various Z-source inverter topologies for PV applications using AI-based MPPT techniques. Int. Trans. Electr. Energy Syst.2023, 1134633. 10.1155/2023/1134633 (2023).

Priyadarshi, N., Padmanaban, S., Kiran Maroti, P. & Sharma, A. An extensive practical investigation of FPSO-based MPPT for grid integrated PV system under variable operating conditions with anti-islanding protection. IEEE Syst. J.13(2), 1861–1871. 10.1109/JSYST.2018.2817584 (2019).

Parvaneh, M. H. & Khorasani, P. G. A new hybrid method based on fuzzy logic for maximum power point tracking of photovoltaic systems. Energy Rep.6, 1619–1632. 10.1016/j.egyr.2020.06.010 (2020).

Saidi, A. S. et al. A novel approach in stand-alone photovoltaic system using MPPT controllers & NNE. Ain Shams Eng. J.12(2), 1973–1984. 10.1016/j.asej.2021.01.006 (2021).

Bataineh, K. & Eid, N. A hybrid maximum power point tracking method for photovoltaic systems for dynamic weather conditions. Resources10.3390/resources7040068 (2018).

Radjai, T., Rahmani, L., Mekhilef, S. & Gaubert, J. P. Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE. Sol. Energy110, 325–337. 10.1016/j.solener.2014.09.014 (2014).

Ge, X. et al. Implementation of a novel hybrid BAT-Fuzzy controller based MPPT for grid-connected PV-battery system. Control Eng. Pract.10.1016/j.conengprac.2020.104380 (2020).

Aldair, A. A., Obed, A. A. & Halihal, A. F. Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system. Renew. Sustain. Energy Rev.82(June 2017), 2202–2217. 10.1016/j.rser.2017.08.071 (2018).

Meenakshi Sundaram, B. et al. Combination of novel converter topology and improved MPPT algorithm for harnessing maximum power from grid connected solar PV systems. J. Electr. Eng. Technol.14, 733–746 (2019).

Konstantopoulos, G. C. & Baldivieso-Monasterios, P. R. State-limiting PID controller for a class of nonlinear systems with constant uncertainties. Int. J. Robust Nonlinear Control30(5), 1770–1787. 10.1002/rnc.4853 (2020).

Chopra, V., Singla, S. K. & Dewan, L. Comparative analysis of tuning a PID controller using intelligent methods. Acta Polytech. Hungarica11(8), 235–249. 10.12700/aph.11.08.2014.08.13 (2014).

Oliver, J. S. et al. Analysis of grid-interactive PV-fed BLDC pump using optimized MPPT in DC–DC converters. Sustainability14(12), 7205 (2022).

Farhat, M., Barambones, O. & Sbita, L. A new maximum power point method based on a sliding mode approach for solar energy harvesting. Appl. Energy185, 1185–1198. 10.1016/j.apenergy.2016.03.055 (2017).

Said Adouairi, M., Bossoufi, B., Motahhir, S. & Saady, I. Application of fuzzy sliding mode control on a single-stage grid-connected PV system based on the voltage-oriented control strategy. Results Eng.17(September 2022), 100822. 10.1016/j.rineng.2022.100822 (2023).

Chatrenour, N., Razmi, H. & Doagou-Mojarrad, H. Improved double integral sliding mode MPPT controller based parameter estimation for a stand-alone photovoltaic system. Energy Convers. Manag.139, 97–109. 10.1016/j.enconman.2017.02.055 (2017).

Pradhan, R. & Subudhi, B. Double integral sliding mode MPPT control of a photovoltaic system. IEEE Trans. Control Syst. Technol.24(1), 285–292. 10.1109/TCST.2015.2420674 (2016).

Kihal, A., Krim, F., Laib, A., Talbi, B. & Afghoul, H. An improved MPPT scheme employing adaptive integral derivative sliding mode control for photovoltaic systems under fast irradiation changes. ISA Trans.87, 297–306. 10.1016/j.isatra.2018.11.020 (2019). PubMed

Aminnejhad, H., Kazeminia, S. & Aliasghary, M. Robust sliding-mode control for maximum power point tracking of photovoltaic power systems with quantized input signal. Optik (Stuttg)247(August), 167983. 10.1016/j.ijleo.2021.167983 (2021).

Naghmash, et al. Backstepping based non-linear control for maximum power point tracking in photovoltaic system. Sol. Energy159(October 2017), 134–141. 10.1016/j.solener.2017.10.062 (2018).

Iftikhar, R. et al. MPPT for photovoltaic system using nonlinear controller. Int. J. Photoenergy10.1155/2018/6979723 (2018).

Shirazi, R. A., Ahmad, I., Arsalan, M., Liaquat, M. Integral backstepping based MPPT controller for photo-voltaic system using SEPIC converter. In 2019 7th International Conference on Control, Mechatronics and Automation ICCMA 2019 62–67. 10.1109/ICCMA46720.2019.8988614 (2019).

Arsalan, M. et al. MPPT for photovoltaic system using nonlinear backstepping controller with integral action. Sol. Energy170(April), 192–200. 10.1016/j.solener.2018.04.061 (2018).

Jiang, M. et al. A novel combinatorial hybrid SFL-PS algorithm based neural network with perturb and observe for the MPPT controller of a hybrid PV-storage system. Control Eng. Pract.114(September 2020), 104880. 10.1016/j.conengprac.2021.104880 (2021).

Hassan, A., Bass, O. & Masoum, M. A. S. An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems. Energy Rep.9, 1535–1548. 10.1016/j.egyr.2022.12.088 (2023).

Korany, E., Yousri, D., Attia, H. A., Zobaa, A. F. & Allam, D. A novel optimized dynamic fractional-order MPPT controller using hunter pray optimizer for alleviating the tracking oscillation with changing environmental conditions. Energy Rep.10, 1819–1832. 10.1016/j.egyr.2023.08.038 (2023).

Winston, D. P. et al. Performance improvement of solar PV array topologies during various partial shading conditions. Sol. Energy196, 228–242 (2020).

Vankadara, S. K., Chatterjee, S. & Balachandran, P. K. Applications of metaheuristic algorithms for MPPT under partial shaded condition in PV system. In 2023 4th International Conference for Emerging Technology (INCET) (IEEE, 2023).

Vankadara, S. K. et al. Marine predator algorithm (MPA)-based MPPT technique for solar PV systems under partial shading conditions. Energies15(17), 6172 (2022).

Mindzie, Y. A. et al. Dynamic performance improvement using model reference adaptive control of photovoltaic systems under fast-changing atmospheric conditions. Int. J. Photoenergy10.1155/2023/5703727 (2023).

Manna, S., Akella, A. K. & Singh, D. K. Novel Lyapunov-based rapid and ripple-free MPPT using a robust model reference adaptive controller for solar PV system. Prot. Control Mod. Power Syst.10.1186/s41601-023-00288-9 (2023).

Manna, S. et al. Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Rep.9, 1818–1829. 10.1016/j.egyr.2022.12.152 (2023).

Hsu, T. W., Wu, H. H., Tsai, D. L. & Wei, C. L. Photovoltaic energy harvester with fractional open-circuit voltage based maximum power point tracking circuit. IEEE Trans. Circuits Syst. II Express Briefs66(2), 257–261. 10.1109/TCSII.2018.2838672 (2019).

Perdana, Y. S., Muyeen, S. M., Al-Durra, A., Morales-Paredes, H. K. & Simoes, M. G. Direct connection of supercapacitor-battery hybrid storage system to the grid-tied photovoltaic system. IEEE Trans. Sustain. Energy10(3), 1370–1379. 10.1109/TSTE.2018.2868073 (2019).

Omairi, A., Ismail, Z. H., Danapalasingam, K. A. & Ibrahim, M. Power harvesting in wireless sensor networks and its adaptation with maximum power point tracking: Current technology and future directions. IEEE Internet Things J.4(6), 2104–2115. 10.1109/JIOT.2017.2768410 (2017).

Baimel, D., Shkoury, R., Elbaz, L., Tapuchi, S. & Baimel, N. Novel optimized method for maximum power point tracking in PV systems using fractional open circuit voltage technique. In 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, vol. 2, 889–894. 10.1109/SPEEDAM.2016.7525984 (2016).

Villalva, M. G., Gazoli, J. R. & Ruppert Filho, E. Modeling and circuit-based simulation of photovoltaic arrays. In 2009 Brazilian Power Electronics Conference 1244–1254 (2009).

Orioli, A. & Di Gangi, A. A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Appl. Energy102, 1160–1177. 10.1016/j.apenergy.2012.06.036 (2013).

Ding, K., Bian, X., Liu, H. & Peng, T. A MATLAB-simulink-based PV module model and its application under conditions of nonuniform irradiance. IEEE Trans. Energy Convers.27(4), 864–872. 10.1109/TEC.2012.2216529 (2012).

Chouder, A., Silvestre, S., Sadaoui, N. & Rahmani, L. Modeling and simulation of a grid connected PV system based on the evaluation of main PV module parameters. Simul. Model. Pract. Theory20(1), 46–58. 10.1016/j.simpat.2011.08.011 (2012).

Peng, L., Sun, Y. & Meng, Z. An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition. J. Power Sources248, 621–631. 10.1016/j.jpowsour.2013.07.058 (2014).

Charaabi, A., Zaidi, A., Barambones, O. & Zanzouri, N. Implementation of adjustable variable step based backstepping control for the PV power plant. Int. J. Electr. Power Energy Syst.136(October 2021), 107682. 10.1016/j.ijepes.2021.107682 (2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...