Atoh1 is required for the formation of lateral line electroreceptors and hair cells, whereas FoxG1 represses an electrosensory fate

. 2025 Jun 25 ; 14 () : . [epub] 20250625

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40560632

Grantová podpora
Grant 20.07(c) Isaac Newton Trust
Research Studentship Anatomical Society
Research Studentship Cambridge Philosophical Society
Projects CENAKVA (LM2018099) and Biodiversity (CZ.02.1.01/0.0/0.0/16_025/0007370) Ministry of Education, Youth and Sports of the Czech Republic
Project 22-31141J Czech Science Foundation
BB/P001947/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Grant 20.07 (c) Isaac Newton Trust
CENAKVA LM2018099 Ministry of Education, Youth and Sports of the Czech Republic
Biodiversity CZ.02.1.01/0.0/0.0/16_025/0007370 Ministry of Education, Youth and Sports of the Czech Republic

In electroreceptive jawed fishes and amphibians, individual lateral line placodes form lines of neuromasts on the head containing mechanosensory hair cells, flanked by fields of ampullary organs containing electroreceptors-modified hair cells that respond to weak electric fields. Extensively shared gene expression between neuromasts and ampullary organs suggests that conserved molecular mechanisms are involved in their development, but a few transcription factor genes are restricted either to the developing electrosensory or mechanosensory lateral line. Here, we used CRISPR/Cas9-mediated mutagenesis in G0-injected sterlet embryos (Acipenser ruthenus, a sturgeon) to test the function of three such genes. We found that the 'hair cell' transcription factor gene Atoh1 is required for both hair cell and electroreceptor differentiation in sterlet, and for Pou4f3 and Gfi1 expression in both neuromasts and ampullary organs. These data support the conservation of developmental mechanisms between hair cells and electroreceptors. Targeting ampullary organ-restricted Neurod4 did not yield any phenotype, potentially owing to redundancy with other Neurod genes that we found to be expressed in sterlet ampullary organs. After targeting mechanosensory-restricted Foxg1, ampullary organs formed within neuromast lines, suggesting that FoxG1 normally represses their development, whether directly or indirectly. We speculate that electrosensory organs may be the 'default' developmental fate of lateral line primordia in electroreceptive vertebrates.

Před aktualizací

doi: 10.1101/2023.04.15.537030 PubMed

Zobrazit více v PubMed

Anwar M, Tambalo M, Ranganathan R, Grocott T, Streit A. A gene network regulated by FGF signalling during ear development. Scientific Reports. 2017;7:6162. doi: 10.1038/s41598-017-05472-0. PubMed DOI PMC

Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP. The origin and evolution of cell types. Nature Reviews Genetics. 2016;17:744–757. doi: 10.1038/nrg.2016.127. PubMed DOI

Baker CVH, Modrell MS, Gillis JA. The evolution and development of vertebrate lateral line electroreceptors. The Journal of Experimental Biology. 2013;216:2515–2522. doi: 10.1242/jeb.082362. PubMed DOI PMC

Baker CVH, Modrell MS. Insights into electroreceptor development and evolution from molecular comparisons with hair cells. Integrative and Comparative Biology. 2018;58:329–340. doi: 10.1093/icb/icy037. PubMed DOI PMC

Baker CVH. In: Electroreception: Fundamental Insights from Comparative Approaches. Carlson BA, Sisneros JA, Popper AN, Fay RR, editors. Cham: Springer; 2019. The development and evolution of lateral line electroreceptors: insights from comparative molecular approaches; pp. 25–62. DOI

Baloch AR, Franěk R, Tichopád T, Fučíková M, Rodina M, Pšenička M. Dnd1 knockout in sturgeons by CRISPR/Cas9 generates germ cell free host for surrogate production. Animals. 2019;9:174. doi: 10.3390/ani9040174. PubMed DOI PMC

Bell JM, Turner EM, Biesemeyer C, Vanderbeck MM, Hendricks R, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. Biology Open. 2024;13:bio060580. doi: 10.1242/bio.060580. PubMed DOI PMC

Bellono NW, Leitch DB, Julius D. Molecular basis of ancestral vertebrate electroreception. Nature. 2017;543:391–396. doi: 10.1038/nature21401. PubMed DOI PMC

Bellono NW, Leitch DB, Julius D. Molecular tuning of electroreception in sharks and skates. Nature. 2018;558:122–126. doi: 10.1038/s41586-018-0160-9. PubMed DOI PMC

Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999;284:1837–1841. doi: 10.1126/science.284.5421.1837. PubMed DOI

Bodznick D, Montgomery JC. In: Electroreception. Bullock TH, Hopkins CD, Popper AN, Fay RR, editors. New York: Springer; 2005. The physiology of low-frequency electrosensory systems; pp. 132–153. DOI

Bose M, Talwar I, Suresh V, Mishra U, Biswas S, Yadav A, Suryavanshi ST, Hippenmeyer S, Tole S. Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway. eLife. 2025;13:RP101851. doi: 10.7554/eLife.101851. PubMed DOI PMC

Brown TL, Horton EC, Craig EW, Goo CEA, Black EC, Hewitt MN, Yee NG, Fan ET, Raible DW, Rasmussen JP. Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLife. 2023;12:e85800. doi: 10.7554/eLife.85800. PubMed DOI PMC

Bullock TH, Bodznick DA, Northcutt RG. The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Research Reviews. 1983;6:25–46. doi: 10.1016/0165-0173(83)90003-6. PubMed DOI

Butts T, Modrell MS, Baker CVH, Wingate RJT. The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish. Evolution & Development. 2014;16:92–100. doi: 10.1111/ede.12067. PubMed DOI PMC

Campbell AS, Minařík M, Franěk R, Vazačová M, Havelka M, Gela D, Pšenička M, Baker CVH. Opposing roles for Bmp signalling during the development of electrosensory lateral line organs. eLife. 2025;14:e99798. doi: 10.7554/eLife.99798. PubMed DOI PMC

Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Molecular and Cellular Neuroscience. 2022;120:103706. doi: 10.1016/j.mcn.2022.103706. PubMed DOI PMC

Chagnaud BP, Wilkens LA, Hofmann M. In: The Senses: A Comprehensive Reference. 2nd. Fritzsch B, editor. Elsevier; 2021. The ampullary electrosensory system – a paddlefish case study; pp. 215–227. DOI

Chen J, Wang W, Tian Z, Dong Y, Dong T, Zhu H, Zhu Z, Hu H, Hu W. Efficient gene transfer and gene editing in sterlet (Acipenser ruthenus) Frontiers in Genetics. 2018;9:00117. doi: 10.3389/fgene.2018.00117. PubMed DOI PMC

Chen Y, Gu Y, Li Y, Li GL, Chai R, Li W, Li H. Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Reports. 2021;35:109016. doi: 10.1016/j.celrep.2021.109016. PubMed DOI

Conant D, Hsiau T, Rossi N, Oki J, Maures T, Waite K, Yang J, Joshi S, Kelso R, Holden K, Enzmann BL, Stoner R. Inference of CRISPR edits from Sanger trace data. The CRISPR Journal. 2022;5:123–130. doi: 10.1089/crispr.2021.0113. PubMed DOI

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143. PubMed DOI PMC

Crampton WGR. Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology. 2019;95:92–134. doi: 10.1111/jfb.13922. PubMed DOI

Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Austine-Orimoloye O, Azov AG, Barnes I, Bennett R, Berry A, Bhai J, Bignell A, Billis K, Boddu S, Brooks L, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, Donaldson S, El Houdaigui B, El Naboulsi T, Fatima R, Giron CG, Genez T, Martinez JG, Guijarro-Clarke C, Gymer A, Hardy M, Hollis Z, Hourlier T, Hunt T, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Marugán JC, Mohanan S, Mushtaq A, Naven M, Ogeh DN, Parker A, Parton A, Perry M, Piližota I, Prosovetskaia I, Sakthivel MP, Salam AIA, Schmitt BM, Schuilenburg H, Sheppard D, Pérez-Silva JG, Stark W, Steed E, Sutinen K, Sukumaran R, Sumathipala D, Suner M-M, Szpak M, Thormann A, Tricomi FF, Urbina-Gómez D, Veidenberg A, Walsh TA, Walts B, Willhoft N, Winterbottom A, Wass E, Chakiachvili M, Flint B, Frankish A, Giorgetti S, Haggerty L, Hunt SE, IIsley GR, Loveland JE, Martin FJ, Moore B, Mudge JM, Muffato M, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Dyer S, Harrison PW, Howe KL, Yates AD, Zerbino DR, Flicek P. Ensembl 2022. Nucleic Acids Research. 2022;50:D988–D995. doi: 10.1093/nar/gkab1049. PubMed DOI PMC

Dettlaff TA, Ginsburg AS, Schmalhausen OI. Sturgeon Fishes: Developmental Biology and Aquaculture. Springer; 1993. DOI

Du K, Stöck M, Kneitz S, Klopp C, Woltering JM, Adolfi MC, Feron R, Prokopov D, Makunin A, Kichigin I, Schmidt C, Fischer P, Kuhl H, Wuertz S, Gessner J, Kloas W, Cabau C, Iampietro C, Parrinello H, Tomlinson C, Journot L, Postlethwait JH, Braasch I, Trifonov V, Warren WC, Meyer A, Guiguen Y, Schartl M. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology & Evolution. 2020;4:841–852. doi: 10.1038/s41559-020-1166-x. PubMed DOI PMC

Elewa A, Wang H, Talavera-López C, Joven A, Brito G, Kumar A, Hameed LS, Penrad-Mobayed M, Yao Z, Zamani N, Abbas Y, Abdullayev I, Sandberg R, Grabherr M, Andersson B, Simon A. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nature Communications. 2017;8:2286. doi: 10.1038/s41467-017-01964-9. PubMed DOI PMC

Fei J-F, Lou WP-K, Knapp D, Murawala P, Gerber T, Taniguchi Y, Nowoshilow S, Khattak S, Tanaka EM. Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum) Nature Protocols. 2018;13:2908–2943. doi: 10.1038/s41596-018-0071-0. PubMed DOI

Flowers GP, Timberlake AT, McLean KC, Monaghan JR, Crews CM. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development. 2014;141:2165–2171. doi: 10.1242/dev.105072. PubMed DOI PMC

Gibbs MA, Northcutt RG. Development of the lateral line system in the shovelnose sturgeon. Brain, Behavior and Evolution. 2004;64:70–84. doi: 10.1159/000079117. PubMed DOI

Gillis JA, Modrell MS, Northcutt RG, Catania KC, Luer CA, Baker CVH. Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development. 2012;139:3142–3146. doi: 10.1242/dev.084046. PubMed DOI PMC

Golson ML, Kaestner KH. Fox transcription factors: from development to disease. Development. 2016;143:4558–4570. doi: 10.1242/dev.112672. PubMed DOI PMC

Hanashima C, Li SC, Shen L, Lai E, Fishell G. Foxg1 suppresses early cortical cell fate. Science. 2004;303:56–59. doi: 10.1126/science.1090674. PubMed DOI

Hernández PP, Olivari FA, Sarrazin AF, Sandoval PC, Allende ML. Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker Sox2 and proliferation‐dependent and‐independent mechanisms of hair cell renewal. Developmental Neurobiology. 2007;67:637–654. doi: 10.1002/dneu.20386. PubMed DOI

Hwang CH, Simeone A, Lai E, Wu DK. Foxg1 is required for proper separation and formation of sensory cristae during inner ear development. Developmental Dynamics. 2009;238:2725–2734. doi: 10.1002/dvdy.22111. PubMed DOI

Iyer AA, Groves AK. Transcription factor reprogramming in the inner ear: turning on cell fate switches to regenerate sensory hair cells. Frontiers in Cellular Neuroscience. 2021;15:660748. doi: 10.3389/fncel.2021.660748. PubMed DOI PMC

Iyer AA, Hosamani I, Nguyen JD, Cai T, Singh S, McGovern MM, Beyer L, Zhang H, Jen HI, Yousaf R, Birol O, Sun JJ, Ray RS, Raphael Y, Segil N, Groves AK. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in mature mammals. eLife. 2022;11:e79712. doi: 10.7554/eLife.79712. PubMed DOI PMC

Jen H-I, Singh S, Tao L, Maunsell HR, Segil N, Groves AK. GFI1 regulates hair cell differentiation by acting as an off-DNA transcriptional co-activator of ATOH1, and a DNA-binding repressor. Scientific Reports. 2022;12:7793. doi: 10.1038/s41598-022-11931-0. PubMed DOI PMC

Jørgensen JM. In: Electroreception. Bullock TH, Hopkins CD, Popper AN, Fay RR, editors. New York: Springer; 2005. Morphology of electroreceptive sensory organs; pp. 47–67. DOI

Kawauchi S, Santos R, Kim J, Hollenbeck PLW, Murray RC, Calof AL. The role of Foxg1 in the development of neural stem cells of the olfactory epithelium. Annals of the New York Academy of Sciences. 2009;1170:21–27. doi: 10.1111/j.1749-6632.2009.04372.x. PubMed DOI PMC

Kniss JS, Jiang L, Piotrowski T. Insights into sensory hair cell regeneration from the zebrafish lateral line. Current Opinion in Genetics & Development. 2016;40:32–40. doi: 10.1016/j.gde.2016.05.012. PubMed DOI

Leitch DB, Julius D. In: Electroreception: Fundamental Insights from Comparative Approaches. Carlson BA, Sisneros JA, Popper AN, Fay RR, editors. Cham: Springer; 2019. Electrosensory transduction: comparisons across structure, afferent response properties, and cellular physiology; pp. 63–90. DOI

Lenhardt M, Finn RN, Cakic P, Kolarevic J, Krpo-Cetkovic J, Radovic I, Fyhn HJ. Analysis of the post-vitellogenic oocytes of three species of Danubian Acipenseridae. Belgian Journal of Zoology. 2005;135:205–207.

Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) Genetics. 2001;158:1203–1215. doi: 10.1093/genetics/158.3.1203. PubMed DOI PMC

Lukoseviciute M, Gavriouchkina D, Williams RM, Hochgreb-Hagele T, Senanayake U, Chong-Morrison V, Thongjuea S, Repapi E, Mead A, Sauka-Spengler T. From pioneer to repressor: bimodal foxd3 activity dynamically remodels neural crest regulatory landscape in vivo. Developmental Cell. 2018;47:608–628. doi: 10.1016/j.devcel.2018.11.009. PubMed DOI PMC

Lush ME, Diaz DC, Koenecke N, Baek S, Boldt H, St Peter MK, Gaitan-Escudero T, Romero-Carvajal A, Busch-Nentwich EM, Perera AG, Hall KE, Peak A, Haug JS, Piotrowski T. scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. eLife. 2019;8:e44431. doi: 10.7554/eLife.44431. PubMed DOI PMC

McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research. 2004;32:W20–W25. doi: 10.1093/nar/gkh435. PubMed DOI PMC

Metscher BD, Müller GB. MicroCT for molecular imaging: quantitative visualization of complete three-dimensional distributions of gene products in embryonic limbs. Developmental Dynamics. 2011;240:2301–2308. doi: 10.1002/dvdy.22733. PubMed DOI

Millimaki BB, Sweet EM, Dhason MS, Riley BB. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development. 2007;134:295–305. doi: 10.1242/dev.02734. PubMed DOI

Minařík M, Modrell MS, Gillis JA, Campbell AS, Fuller I, Lyne R, Micklem G, Gela D, Pšenička M, Baker CVH. Identification of multiple transcription factor genes potentially involved in the development of electrosensory versus mechanosensory lateral line organs. Frontiers in Cell and Developmental Biology. 2024;12:1327924. doi: 10.3389/fcell.2024.1327924. PubMed DOI PMC

Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CVH. Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nature Communications. 2011a;2:1502. doi: 10.1038/ncomms1502. PubMed DOI PMC

Modrell MS, Buckley D, Baker CVH. Molecular analysis of neurogenic placode development in a basal ray‐finned fish. Genesis. 2011b;49:278–294. doi: 10.1002/dvg.20707. PubMed DOI PMC

Modrell MS, Baker CVH. Evolution of electrosensory ampullary organs: conservation of Eya4 expression during lateral line development in jawed vertebrates. Evolution & Development. 2012;14:277–285. doi: 10.1111/j.1525-142X.2012.00544.x. PubMed DOI PMC

Modrell MS, Lyne M, Carr AR, Zakon HH, Buckley D, Campbell AS, Davis MC, Micklem G, Baker CVH. Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife. 2017a;6:e24197. doi: 10.7554/eLife.24197. PubMed DOI PMC

Modrell MS, Tidswell ORA, Baker CVH. Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Developmental Biology. 2017b;431:48–58. doi: 10.1016/j.ydbio.2017.08.017. PubMed DOI PMC

Mogdans J. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. Journal of Fish Biology. 2019;95:53–72. doi: 10.1111/jfb.13966. PubMed DOI

Moser T, Grabner CP, Schmitz F. Sensory processing at ribbon synapses in the retina and the cochlea. Physiological Reviews. 2020;100:103–144. doi: 10.1152/physrev.00026.2018. PubMed DOI

Mukhopadhyay M, Pangrsic T. Synaptic transmission at the vestibular hair cells of amniotes. Molecular and Cellular Neuroscience. 2022;121:103749. doi: 10.1016/j.mcn.2022.103749. PubMed DOI

Nicolson T. The genetics of hair-cell function in zebrafish. Journal of Neurogenetics. 2017;31:102–112. doi: 10.1080/01677063.2017.1342246. PubMed DOI PMC

Northcutt RG, Catania KC, Criley BB. Development of lateral line organs in the axolotl. The Journal of Comparative Neurology. 1994;340:480–514. doi: 10.1002/cne.903400404. PubMed DOI

Northcutt RG. Evolution of gnathostome lateral line ontogenies. Brain, Behavior and Evolution. 1997;50:25–37. doi: 10.1159/000113319. PubMed DOI

O’Neill P, McCole RB, Baker CVH. A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Developmental Biology. 2007;304:156–181. doi: 10.1016/j.ydbio.2006.12.029. PubMed DOI PMC

Pauley S, Lai E, Fritzsch B. Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Developmental Dynamics. 2006;235:2470–2482. doi: 10.1002/dvdy.20839. PubMed DOI PMC

Pickett SB, Raible DW. Water waves to sound waves: using zebrafish to explore hair cell biology. Journal of the Association for Research in Otolaryngology. 2019;20:1–19. doi: 10.1007/s10162-018-00711-1. PubMed DOI PMC

Piotrowski T, Baker CVH. The development of lateral line placodes: taking a broader view. Developmental Biology. 2014;389:68–81. doi: 10.1016/j.ydbio.2014.02.016. PubMed DOI

Roccio M, Senn P, Heller S. Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hearing Research. 2020;397:107859. doi: 10.1016/j.heares.2019.107859. PubMed DOI

Singh S, Groves AK. The molecular basis of craniofacial placode development. WIREs Developmental Biology. 2016;5:363–376. doi: 10.1002/wdev.226. PubMed DOI PMC

Square T, Romášek M, Jandzik D, Cattell MV, Klymkowsky M, Medeiros DM. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates. Development. 2015;142:4180–4187. doi: 10.1242/dev.125609. PubMed DOI PMC

Square TA, Jandzik D, Massey JL, Romášek M, Stein HP, Hansen AW, Purkayastha A, Cattell MV, Medeiros DM. Evolution of the endothelin pathway drove neural crest cell diversification. Nature. 2020;585:563–568. doi: 10.1038/s41586-020-2720-z. PubMed DOI

Stundl J, Soukup V, Franěk R, Pospisilova A, Psutkova V, Pšenička M, Cerny R, Bronner ME, Medeiros DM, Jandzik D. Efficient CRISPR mutagenesis in sturgeon demonstrates its utility in large, slow-maturing vertebrates. Frontiers in Cell and Developmental Biology. 2022;10:750833. doi: 10.3389/fcell.2022.750833. PubMed DOI PMC

Tasdemir-Yilmaz OE, Druckenbrod NR, Olukoya OO, Dong W, Yung AR, Bastille I, Pazyra-Murphy MF, Sitko AA, Hale EB, Vigneau S, Gimelbrant AA, Kharchenko PV, Goodrich LV, Segal RA. Diversity of developing peripheral glia revealed by single-cell RNA sequencing. Developmental Cell. 2021;56:2516–2535. doi: 10.1016/j.devcel.2021.08.005. PubMed DOI PMC

Uribe-Salazar JM, Kaya G, Sekar A, Weyenberg K, Ingamells C, Dennis MY. Evaluation of CRISPR gene-editing tools in zebrafish. BMC Genomics. 2022;23:12. doi: 10.1186/s12864-021-08238-1. PubMed DOI PMC

Webb JF. In: The Senses: A Comprehensive Reference. 2nd. Fritzsch B, editor. Elsevier; 2021. Morphology of the mechanosensory lateral line system of fishes; pp. 29–46. DOI

Whitear M. Merkel cells in lower vertebrates. Archives of Histology and Cytology. 1989;52 Suppl:415–422. doi: 10.1679/aohc.52.suppl_415. PubMed DOI

Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system. Quantitative Biology. 2014;2:59–70. doi: 10.1007/s40484-014-0030-x. PubMed DOI PMC

York JR, Zehnder K, Yuan T, Lakiza O, McCauley DW. Evolution of Snail-mediated regulation of neural crest and placodes from an ancient role in bilaterian neurogenesis. Developmental Biology. 2019;453:180–190. doi: 10.1016/j.ydbio.2019.06.010. PubMed DOI

Yu HV, Tao L, Llamas J, Wang X, Nguyen JD, Trecek T, Segil N. POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism. PNAS. 2021;118:e2105137118. doi: 10.1073/pnas.2105137118. PubMed DOI PMC

Zhang S, Zhang Y, Dong Y, Guo L, Zhang Z, Shao B, Qi J, Zhou H, Zhu W, Yan X, Hong G, Zhang L, Zhang X, Tang M, Zhao C, Gao X, Chai R. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cellular and Molecular Life Sciences. 2019;77:1401–1419. doi: 10.1007/s00018-019-03291-2. PubMed DOI PMC

Zhang Y, Zhang S, Zhang Z, Dong Y, Ma X, Qiang R, Chen Y, Gao X, Zhao C, Chen F, He S, Chai R. Knockdown of Foxg1 in Sox9+ supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse utricle. Aging. 2020;12:19834–19851. doi: 10.18632/aging.104009. PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.fqz612k3s

GEO
GSE92470

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...