Opposing roles for Bmp signalling during the development of electrosensory lateral line organs
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Research Studentship
Anatomical Society
Research Studentship
Cambridge Philosophical Society
Grant 20.07(c)
Cambridge Isaac Newton Trust
projects CENAKVA (LM2018099) and Biodiversity (CZ.02.1.01/0.0/0.0/16_025/0007370)
Ministry of Education, Youth and Sports of the Czech Republic
project 22-31141J
Czech Science Foundation
BB/P001947/1
Biotechnology and Biological Sciences Research Council - United Kingdom
Grant 20.07[c]
Cambridge Isaac Newton Trust
projects CENAKVA [LM2018099] and Biodiversity [CZ.02.1.01/0.0/0.0/16_025/0007370]
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39745052
PubMed Central
PMC11936418
DOI
10.7554/elife.99798
PII: 99798
Knihovny.cz E-zdroje
- Klíčová slova
- Acipenser ruthenus, Bmp, ampullary organs, developmental biology, lateral line, neuromasts, sterlet sturgeon, sterlet sturgeon (acipenser ruthenus),
- MeSH
- kostní morfogenetické proteiny * metabolismus genetika MeSH
- proudový orgán * embryologie metabolismus růst a vývoj MeSH
- rybí proteiny * metabolismus genetika MeSH
- ryby * embryologie genetika MeSH
- signální transdukce * MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kostní morfogenetické proteiny * MeSH
- rybí proteiny * MeSH
The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.
doi: 10.1101/2024.03.07.583945 PubMed
Zobrazit více v PubMed
Andermann P, Ungos J, Raible DW. Neurogenin1 defines zebrafish cranial sensory ganglia precursors. Developmental Biology. 2002;251:45–58. doi: 10.1006/dbio.2002.0820. PubMed DOI
Bai H, Jiang L, Wang X, Gao X, Bing J, Xi C, Wang W, Zhang M, Zhang X, Han Z, Xu J, Zeng S. Transcriptomic analysis of mouse cochleae suffering from gentamicin damage reveals the signalling pathways involved in hair cell regeneration. Scientific Reports. 2019;9:10494. doi: 10.1038/s41598-019-47051-5. PubMed DOI PMC
Baker CVH, Modrell MS, Gillis JA. The evolution and development of vertebrate lateral line electroreceptors. The Journal of Experimental Biology. 2013;216:2515–2522. doi: 10.1242/jeb.082362. PubMed DOI PMC
Baker CVH, Modrell MS. Insights into electroreceptor development and evolution from molecular comparisons with hair cells. Integrative and Comparative Biology. 2018;58:329–340. doi: 10.1093/icb/icy037. PubMed DOI PMC
Baker CVH. In: Electroreception: Fundamental Insights from Comparative Approaches. Carlson BA, Sisneros JA, Popper AN, Fay RR, editors. Cham: Springer; 2019. The development and evolution of lateral line electroreceptors: insights from comparative molecular approaches; pp. 25–62. DOI
Bodznick D, Montgomery JC. In: Electroreception. Popper AN, Fay RR, Bullock TH, editors. New York: Springer; 2005. The physiology of low-frequency electrosensory systems; pp. 132–153. DOI
Bullock TH, Bodznick DA, Northcutt RG. The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Research Reviews. 1983;6:25–46. doi: 10.1016/0165-0173(83)90003-6. PubMed DOI
Camacho S, Ostos MDV, Llorente JI, Sanz A, García M, Domezain A, Carmona R. Structural characteristics and development of ampullary organs in Acipenser naccarii. The Anatomical Record. 2007;290:1178–1189. doi: 10.1002/ar.20569. PubMed DOI
Cernuda-Cernuda R, García-Fernández JM. Structural diversity of the ordinary and specialized lateral line organs. Microscopy Research and Technique. 1996;34:302–312. doi: 10.1002/(SICI)1097-0029(19960701)34:4<302::AID-JEMT3>3.0.CO;2-Q. PubMed DOI
Chagnaud BP, Wilkens LA, Hofmann M. In: The Senses: A Comprehensive Reference (Second Edition) Fritzsch B, editor. Elsevier; 2021. The ampullary electrosensory system – a paddlefish case study; pp. 215–227. DOI
Chang W, Lin Z, Kulessa H, Hebert J, Hogan BLM, Wu DK. Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements. PLOS Genetics. 2008;4:e1000050. doi: 10.1371/journal.pgen.1000050. PubMed DOI PMC
Chitnis AB. In: The Senses: A Comprehensive Reference (Second Edition) Fritzsch B, editor. Elsevier; 2021. Development of the zebrafish posterior lateral line system; pp. 66–84. DOI
Conant D, Hsiau T, Rossi N, Oki J, Maures T, Waite K, Yang J, Joshi S, Kelso R, Holden K, Enzmann BL, Stoner R. Inference of CRISPR edits from Sanger trace data. The CRISPR Journal. 2022;5:123–130. doi: 10.1089/crispr.2021.0113. PubMed DOI
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143. PubMed DOI PMC
Cooper RL, Thiery AP, Fletcher AG, Delbarre DJ, Rasch LJ, Fraser GJ. An ancient Turing-like patterning mechanism regulates skin denticle development in sharks. Science Advances. 2018;4:eaau5484. doi: 10.1126/sciadv.aau5484. PubMed DOI PMC
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. Journal of Fish Biology. 2019;95:92–134. doi: 10.1111/jfb.13922. PubMed DOI
Cross EE, Thomason RT, Martinez M, Hopkins CR, Hong CC, Bader DM. Application of small organic molecules reveals cooperative TGFβ and BMP regulation of mesothelial cell behaviors. ACS Chemical Biology. 2011;6:952–961. doi: 10.1021/cb200205z. PubMed DOI PMC
Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Austine-Orimoloye O, Azov AG, Barnes I, Bennett R, Berry A, Bhai J, Bignell A, Billis K, Boddu S, Brooks L, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, Donaldson S, El Houdaigui B, El Naboulsi T, Fatima R, Giron CG, Genez T, Martinez JG, Guijarro-Clarke C, Gymer A, Hardy M, Hollis Z, Hourlier T, Hunt T, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Marugán JC, Mohanan S, Mushtaq A, Naven M, Ogeh DN, Parker A, Parton A, Perry M, Piližota I, Prosovetskaia I, Sakthivel MP, Salam AIA, Schmitt BM, Schuilenburg H, Sheppard D, Pérez-Silva JG, Stark W, Steed E, Sutinen K, Sukumaran R, Sumathipala D, Suner MM, Szpak M, Thormann A, Tricomi FF, Urbina-Gómez D, Veidenberg A, Walsh TA, Walts B, Willhoft N, Winterbottom A, Wass E, Chakiachvili M, Flint B, Frankish A, Giorgetti S, Haggerty L, Hunt SE, IIsley GR, Loveland JE, Martin FJ, Moore B, Mudge JM, Muffato M, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Dyer S, Harrison PW, Howe KL, Yates AD, Zerbino DR, Flicek P. Ensembl 2022. Nucleic Acids Research. 2022;50:D988–D995. doi: 10.1093/nar/gkab1049. PubMed DOI PMC
Dettlaff TA, Ginsburg AS, Schmalhausen OI. Sturgeon Fishes: Developmental Biology and Aquaculture. Berlin: Springer-Verlag; 1993. DOI
Du K, Stöck M, Kneitz S, Klopp C, Woltering JM, Adolfi MC, Feron R, Prokopov D, Makunin A, Kichigin I, Schmidt C, Fischer P, Kuhl H, Wuertz S, Gessner J, Kloas W, Cabau C, Iampietro C, Parrinello H, Tomlinson C, Journot L, Postlethwait JH, Braasch I, Trifonov V, Warren WC, Meyer A, Guiguen Y, Schartl M. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology & Evolution. 2020;4:841–852. doi: 10.1038/s41559-020-1166-x. PubMed DOI PMC
Fan C, Zou S, Wang J, Zhang B, Song J. Neomycin damage and regeneration of hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval Siberian sturgeon (Acipenser baerii) The Journal of Comparative Neurology. 2016;524:1443–1456. doi: 10.1002/cne.23918. PubMed DOI
Gibbs MA, Northcutt RG. Development of the lateral line system in the shovelnose sturgeon. Brain, Behavior and Evolution. 2004;64:70–84. doi: 10.1159/000079117. PubMed DOI
Gilmour DT, Maischein H-M, Nüsslein-Volhard C. Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron. 2002;34:577–588. doi: 10.1016/s0896-6273(02)00683-9. PubMed DOI
Gilmour D, Knaut H, Maischein H-M, Nüsslein-Volhard C. Towing of sensory axons by their migrating target cells in vivo. Nature Neuroscience. 2004;7:491–492. doi: 10.1038/nn1235. PubMed DOI
Grant KA, Raible DW, Piotrowski T. Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron. 2005;45:69–80. doi: 10.1016/j.neuron.2004.12.020. PubMed DOI
Green JBA, Sharpe J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development. 2015;142:1203–1211. doi: 10.1242/dev.114991. PubMed DOI
Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development. 2014;141:707–714. doi: 10.1242/dev.099853. PubMed DOI
Hao J, Ho JN, Lewis JA, Karim KA, Daniels RN, Gentry PR, Hopkins CR, Lindsley CW, Hong CC. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chemical Biology. 2010;5:245–253. doi: 10.1021/cb9002865. PubMed DOI PMC
Heller IS, Guenther CA, Meireles AM, Talbot WS, Kingsley DM. Characterization of mouse Bmp5 regulatory injury element in zebrafish wound models. Bone. 2022;155:116263. doi: 10.1016/j.bone.2021.116263. PubMed DOI PMC
Hernández PP, Olivari FA, Sarrazin AF, Sandoval PC, Allende ML. Regeneration in zebrafish lateral line neuromasts: expression of the neural progenitor cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal. Developmental Neurobiology. 2007;67:637–654. doi: 10.1002/dneu.20386. PubMed DOI
Jiang T-X, Jung H-S, Widelitz RB, Chuong C-M. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development. 1999;126:4997–5009. doi: 10.1242/dev.126.22.4997. PubMed DOI
Jiang L, Romero-Carvajal A, Haug JS, Seidel CW, Piotrowski T. Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. PNAS. 2014;111:E1383–E92. doi: 10.1073/pnas.1402898111. PubMed DOI PMC
Jørgensen JM. In: Electroreception. Bullock TH, Hopkins CD, Popper AN, Fay RR, editors. New York: Springer; 2005. Morphology of electroreceptive sensory organs; pp. 47–67. DOI
Jørgensen JM. In: Encyclopedia of Fish Physiology: From Genome to Environment. Farrell AP, editor. San Diego: Academic Press; 2011. Morphology of electroreceptive sensory organs; pp. 350–358. DOI
Josberger EE, Hassanzadeh P, Deng Y, Sohn J, Rego MJ, Amemiya CT, Rolandi M. Proton conductivity in ampullae of Lorenzini jelly. Science Advances. 2016;2:e1600112. doi: 10.1126/sciadv.1600112. PubMed DOI PMC
Jung H-S, Francis-West PH, Widelitz RB, Jiang T-X, Ting-Berreth S, Tickle C, Wolpert L, Chuong C-M. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Developmental Biology. 1998;196:11–23. doi: 10.1006/dbio.1998.8850. PubMed DOI
Kamaid A, Neves J, Giráldez F. Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between Bmp signaling and Atoh1. The Journal of Neuroscience. 2010;30:11426–11434. doi: 10.1523/JNEUROSCI.2570-10.2010. PubMed DOI PMC
Leitch DB, Julius D. In: Electroreception: Fundamental Insights from Comparative Approaches. Carlson BA, Sisneros JA, Popper AN, Fay RR, editors. Cham: Springer; 2019. Electrosensory transduction: comparisons across structure, afferent response properties, and cellular physiology; pp. 63–90. DOI
Lewis RM, Keller JJ, Wan L, Stone JS. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium. Hearing Research. 2018;364:1–11. doi: 10.1016/j.heares.2018.04.008. PubMed DOI PMC
Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, Liu H, Heller S. BMP4 signaling is involved in the generation of inner ear sensory epithelia. BMC Developmental Biology. 2005;5:16. doi: 10.1186/1471-213X-5-16. PubMed DOI PMC
López-Schier H, Hudspeth AJ. Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. PNAS. 2005;102:1496–1501. doi: 10.1073/pnas.0409361102. PubMed DOI PMC
Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) Genetics. 2001;158:1203–1215. doi: 10.1093/genetics/158.3.1203. PubMed DOI PMC
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Developmental Dynamics. 2014;243:1187–1202. doi: 10.1002/dvdy.24167. PubMed DOI PMC
Lush ME, Diaz DC, Koenecke N, Baek S, Boldt H, St Peter MK, Gaitan-Escudero T, Romero-Carvajal A, Busch-Nentwich EM, Perera AG, Hall KE, Peak A, Haug JS, Piotrowski T. scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. eLife. 2019;8:e44431. doi: 10.7554/eLife.44431. PubMed DOI PMC
McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research. 2004;32:W20–W5. doi: 10.1093/nar/gkh435. PubMed DOI PMC
McGraw HF, Drerup CM, Nicolson T, Nechiporuk AV. In: Auditory Development and Plasticity. Cramer KS, Coffin AB, Fay RR, Popper AN, editors. Springer; 2017. The molecular and cellular mechanisms of zebrafish lateral line development; pp. 49–73. DOI
Metcalfe WK. Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish. The Journal of Comparative Neurology. 1985;238:218–224. doi: 10.1002/cne.902380208. PubMed DOI
Metscher BD, Müller GB. MicroCT for molecular imaging: quantitative visualization of complete three-dimensional distributions of gene products in embryonic limbs. Developmental Dynamics. 2011;240:2301–2308. doi: 10.1002/dvdy.22733. PubMed DOI
Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D. BMP2 and BMP7 play antagonistic roles in feather induction. Development. 2008;135:2797–2805. doi: 10.1242/dev.018341. PubMed DOI PMC
Minařík M, Modrell MS, Gillis JA, Campbell AS, Fuller I, Lyne R, Micklem G, Gela D, Pšenička M, Baker CVH. Identification of multiple transcription factor genes potentially involved in the development of electrosensory versus mechanosensory lateral line organs. Frontiers in Cell and Developmental Biology. 2024a;12:e1327924. doi: 10.3389/fcell.2024.1327924. PubMed DOI PMC
Minařík M, Campbell AS, Franěk R, Vazačová M, Havelka M, Gela D, Pšenička M, Baker CVH. Atoh1 Is required for the formation of lateral line electroreceptors and hair cells, whereas Foxg1 represses an electrosensory fate. bioRxiv. 2024b doi: 10.1101/2023.04.15.537030. DOI
Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CVH. Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nature Communications. 2011a;2:496. doi: 10.1038/ncomms1502. PubMed DOI PMC
Modrell MS, Buckley D, Baker CVH. Molecular analysis of neurogenic placode development in a basal ray-finned fish. Genesis. 2011b;49:278–294. doi: 10.1002/dvg.20707. PubMed DOI PMC
Modrell MS, Lyne M, Carr AR, Zakon HH, Buckley D, Campbell AS, Davis MC, Micklem G, Baker CV. Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife. 2017a;6:e24197. doi: 10.7554/eLife.24197. PubMed DOI PMC
Modrell MS, Tidswell ORA, Baker CVH. Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Developmental Biology. 2017b;431:48–58. doi: 10.1016/j.ydbio.2017.08.017. PubMed DOI PMC
Mogdans J. In: The Senses: A Comprehensive Reference (Second Edition) Fritzsch B, editor. Elsevier; 2021. Physiology of the peripheral lateral line system; pp. 143–162. DOI
Montgomery J, Bleckmann H, Coombs S. In: In: The Lateral Line System. Coombs SC, Bleckmann H, Fay RR, Popper AN, editors. New York: Springer; 2014. Sensory ecology and neuroethology of the lateral line; pp. 121–150. DOI
Morsli H, Choo D, Ryan A, Johnson R, Wu DK. Development of the mouse inner ear and origin of its sensory organs. The Journal of Neuroscience. 1998;18:3327–3335. doi: 10.1523/JNEUROSCI.18-09-03327.1998. PubMed DOI PMC
Mou C, Jackson B, Schneider P, Overbeek PA, Headon DJ. Generation of the primary hair follicle pattern. PNAS. 2006;103:9075–9080. doi: 10.1073/pnas.0600825103. PubMed DOI PMC
Mowbray C, Hammerschmidt M, Whitfield TT. Expression of BMP signalling pathway members in the developing zebrafish inner ear and lateral line. Mechanisms of Development. 2001;108:179–184. doi: 10.1016/s0925-4773(01)00479-8. PubMed DOI
Nikaido M, Navajas Acedo J, Hatta K, Piotrowski T. Retinoic acid is required and Fgf, Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish. Developmental Biology. 2017;431:215–225. doi: 10.1016/j.ydbio.2017.09.017. PubMed DOI
Noramly S, Morgan BA. BMPs mediate lateral inhibition at successive stages in feather tract development. Development. 1998;125:3775–3787. doi: 10.1242/dev.125.19.3775. PubMed DOI
Northcutt RG. Evolution of gnathostome lateral line ontogenies. Brain, Behavior and Evolution. 1997;50:25–37. doi: 10.1159/000113319. PubMed DOI
Northcutt RG. In: Electroreception. Bullock TH, Hopkins CD, Popper AN, Fay RR, editors. New York: Springer; 2005. Ontogeny of electroreceptors and their neural circuitry; pp. 112–131. DOI
Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, Groves AK. BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. The Journal of Neuroscience. 2010;30:15044–15051. doi: 10.1523/JNEUROSCI.3547-10.2010. PubMed DOI PMC
Pickett SB, Raible DW. Water waves to sound waves: using zebrafish to explore hair cell biology. Journal of the Association for Research in Otolaryngology. 2019;20:1–19. doi: 10.1007/s10162-018-00711-1. PubMed DOI PMC
Piotrowski T, Baker CVH. The development of lateral line placodes: taking a broader view. Developmental Biology. 2014;389:68–81. doi: 10.1016/j.ydbio.2014.02.016. PubMed DOI
Pujades C, Kamaid A, Alsina B, Giraldez F. BMP-signaling regulates the generation of hair-cells. Developmental Biology. 2006;292:55–67. doi: 10.1016/j.ydbio.2006.01.001. PubMed DOI
Rabinowitz R, Offen D. Single-base resolution: increasing the specificity of the CRISPR-Cas system in gene editing. Molecular Therapy. 2021;29:937–948. doi: 10.1016/j.ymthe.2020.11.009. PubMed DOI PMC
Russell DF, Zhang W, Warnock TC, Neiman LL. Lectin binding and gel secretion within Lorenzinian electroreceptors of Polyodon. PLOS ONE. 2022;17:e0276854. doi: 10.1371/journal.pone.0276854. PubMed DOI PMC
Schmierer B, Hill CS. TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nature Reviews Molecular Cell Biology. 2007;8:970–982. doi: 10.1038/nrm2297. PubMed DOI
Stundl J, Soukup V, Franěk R, Pospisilova A, Psutkova V, Pšenička M, Cerny R, Bronner ME, Medeiros DM, Jandzik D. Efficient CRISPR mutagenesis in sturgeon demonstrates its utility in large, slow-maturing vertebrates. Frontiers in Cell and Developmental Biology. 2022;10:e750833. doi: 10.3389/fcell.2022.750833. PubMed DOI PMC
Thisse B, Thisse C. Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission. 2004. [February 1, 2024]. http://zfin.org
Tong X, Zhu C, Liu L, Huang M, Xu J, Chen X, Zou J. Role of Sostdc1 in skeletal biology and cancer. Frontiers in Physiology. 2022;13:1029646. doi: 10.3389/fphys.2022.1029646. PubMed DOI PMC
Undurraga CA, Gou Y, Sandoval PC, Nuñez VA, Allende ML, Riley BB, Hernández PP, Sarrazin AF. Sox2 and Sox3 are essential for development and regeneration of the zebrafish lateral line. bioRxiv. 2019 doi: 10.1101/856088. DOI
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3-new capabilities and interfaces. Nucleic Acids Research. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Uribe-Salazar JM, Kaya G, Sekar A, Weyenberg K, Ingamells C, Dennis MY. Evaluation of CRISPR gene-editing tools in zebrafish. BMC Genomics. 2022;23:12. doi: 10.1186/s12864-021-08238-1. PubMed DOI PMC
Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW, Wang ECE, DeStefano GM, O’Donnell-Luria AH, Christiano AM, Riley B, Butler SJ, Luria V. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology. 2020;464:71–87. doi: 10.1016/j.ydbio.2020.03.015. PubMed DOI PMC
Wada H, Dambly-Chaudière C, Kawakami K, Ghysen A. Innervation is required for sense organ development in the lateral line system of adult zebrafish. PNAS. 2013;110:5659–5664. doi: 10.1073/pnas.1214004110. PubMed DOI PMC
Wada H, Kawakami K. Size control during organogenesis: Development of the lateral line organs in zebrafish. Development, Growth & Differentiation. 2015;57:169–178. doi: 10.1111/dgd.12196. PubMed DOI
Wang J, Lu C, Zhao Y, Tang Z, Song J, Fan C. Transcriptome profiles of sturgeon lateral line electroreceptor and mechanoreceptor during regeneration. BMC Genomics. 2020;21:875. doi: 10.1186/s12864-020-07293-4. PubMed DOI PMC
Warth P, Hilton EJ, Naumann B, Olsson L, Konstantinidis P. Development of the muscles associated with the mandibular and hyoid arches in the Siberian sturgeon, Acipenser baerii (Acipenseriformes: Acipenseridae) Journal of Morphology. 2018;279:163–175. doi: 10.1002/jmor.20761. PubMed DOI
Winklbauer R. Development of the lateral line system in Xenopus. Progress in Neurobiology. 1989;32:181–206. doi: 10.1016/0301-0082(89)90016-6. PubMed DOI
Wu DK, Oh S-H. Sensory organ generation in the chick inner ear. The Journal of Neuroscience. 1996;16:6454–6462. doi: 10.1523/JNEUROSCI.16-20-06454.1996. PubMed DOI PMC
Yadin D, Knaus P, Mueller TD. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine & Growth Factor Reviews. 2016;27:13–34. doi: 10.1016/j.cytogfr.2015.11.005. PubMed DOI
Zhang X, Xia K, Lin L, Zhang F, Yu Y, St Ange K, Han X, Edsinger E, Sohn J, Linhardt RJ. Structural and functional components of the skate sensory organ ampullae of Lorenzini. ACS Chemical Biology. 2018;13:1677–1685. doi: 10.1021/acschembio.8b00335. PubMed DOI
Zimmerman LB, De Jesús-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 1996;86:599–606. doi: 10.1016/s0092-8674(00)80133-6. PubMed DOI