Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates

. 2022 ; 10 () : 750833. [epub] 20220210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35223827

In the last decade, the CRISPR/Cas9 bacterial virus defense system has been adapted as a user-friendly, efficient, and precise method for targeted mutagenesis in eukaryotes. Though CRISPR/Cas9 has proven effective in a diverse range of organisms, it is still most often used to create mutant lines in lab-reared genetic model systems. However, one major advantage of CRISPR/Cas9 mutagenesis over previous gene targeting approaches is that its high efficiency allows the immediate generation of near-null mosaic mutants. This feature could potentially allow genotype to be linked to phenotype in organisms with life histories that preclude the establishment of purebred genetic lines; a group that includes the vast majority of vertebrate species. Of particular interest to scholars of early vertebrate evolution are several long-lived and slow-maturing fishes that diverged from two dominant modern lineages, teleosts and tetrapods, in the Ordovician, or before. These early-diverging or "basal" vertebrates include the jawless cyclostomes, cartilaginous fishes, and various non-teleost ray-finned fishes. In addition to occupying critical phylogenetic positions, these groups possess combinations of derived and ancestral features not seen in conventional model vertebrates, and thus provide an opportunity for understanding the genetic bases of such traits. Here we report successful use of CRISPR/Cas9 mutagenesis in one such non-teleost fish, sterlet Acipenser ruthenus, a small species of sturgeon. We introduced mutations into the genes Tyrosinase, which is needed for melanin production, and Sonic hedgehog, a pleiotropic developmental regulator with diverse roles in early embryonic patterning and organogenesis. We observed disruption of both loci and the production of consistent phenotypes, including both near-null mutants' various hypomorphs. Based on these results, and previous work in lamprey and amphibians, we discuss how CRISPR/Cas9 F0 mutagenesis may be successfully adapted to other long-lived, slow-maturing aquatic vertebrates and identify the ease of obtaining and injecting eggs and/or zygotes as the main challenges.

Zobrazit více v PubMed

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Askary A., Smeeton J., Paul S., Schindler S., Braasch I., Ellis N. A., et al. (2016). Ancient Origin of Lubricated Joints in Bony Vertebrates. Elife 5, e16415. 10.7554/eLife.16415 PubMed DOI PMC

Baloch A. R., Franěk R., Tichopád T., Fučíková M., Rodina M., Pšenička M. (2019). Dnd1 Knockout in Sturgeons by CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals 9, 174. 10.3390/ani9040174 PubMed DOI PMC

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., et al. (2007). CRISPR Provides Acquired Resistance against Viruses in Prokaryotes. Science 315, 1709–1712. 10.1126/science.1138140 PubMed DOI

Barske L., Fabian P., Hirschberger C., Jandzik D., Square T., Xu P., et al. (2020). Evolution of Vertebrate Gill Covers via Shifts in an Ancient Pou3f3 Enhancer. Proc. Natl. Acad. Sci. USA 117, 24876–24884. 10.1073/pnas.2011531117 PubMed DOI PMC

Bassett A. R., Tibbit C., Ponting C. P., Liu J.-L. (2013). Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System. Cel Rep. 4, 220–228. 10.1016/j.celrep.2013.06.020 PubMed DOI PMC

Bemis W. E., Findeis E. K., Grande L. (1997). An Overview of Acipenseriformes. Environ. Biol. Fishes 48, 25–71. 10.1023/A:1007370213924 DOI

Bi X., Wang K., Yang L., Pan H., Jiang H., Wei Q., et al. (2021). Tracing the Genetic Footprints of Vertebrate landing in Non-teleost ray-finned Fishes. Cell 184, 1377–1391. 10.1016/j.cell.2021.01.046 PubMed DOI

Blitz I. L., Biesinger J., Xie X., Cho K. W. Y. (2013). Biallelic Genome Modification in F0Xenopus Tropicalisembryos Using the CRISPR/Cas System. Genesis 51, 827–834. 10.1002/dvg.22719 PubMed DOI PMC

Braasch I., Gehrke A. R., Smith J. J., Kawasaki K., Manousaki T., Pasquier J., et al. (2016). The Spotted Gar Genome Illuminates Vertebrate Evolution and Facilitates Human-Teleost Comparisons. Nat. Genet. 48 (4), 427–437. 10.1038/ng.3526 PubMed DOI PMC

Braasch I., Guiguen Y., Loker R., Letaw J. H., Ferrara A., Bobe J., et al. (2014). Connectivity of Vertebrate Genomes: Paired-Related Homeobox (Prrx) Genes in Spotted Gar, Basal Teleosts, and Tetrapods. Comp. Biochem. Physiol. C: Toxicol. PharmacologyCBP 163, 24–36. 10.1016/j.cbpc.2014.01.005 PubMed DOI PMC

Brand M., Granato M., Nösslein-Volhard C. (2002). “Keeping and Raising Zebrafish,” in Zebrafish - A Practical Approach. Editors Nüsslein-Volhard C., Dahm R. (Oxford, UK: Oxford University Press; ).

Burger A., Lindsay H., Felker A., Hess C., Anders C., Chiavacci E., et al. (2016). Maximizing Mutagenesis with Solubilized CRISPR-Cas9 Ribonucleoprotein Complexes. Development 143, 2025–2037. 10.1242/dev.134809 PubMed DOI

Chebanov M. S., Galich E. V. (2011). Sturgeon hatchery manual. FAO Fisheries and Aquaculture Technical Paper No. 558. Ankara: FAO, 303.

Chen B., Gilbert L. A., Cimini B. A., Schnitzbauer J., Zhang W., Li G.-W., et al. (2013). Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System. Cell 155, 1479–1491. 10.1016/j.cell.2013.12.001 PubMed DOI PMC

Chen J., Wang W., Tian Z., Dong Y., Dong T., Zhu H., et al. (2018). Efficient Gene Transfer and Gene Editing in Sterlet (Acipenser ruthenus). Front. Genet. 9, 117. 10.3389/fgene.2018.00117 PubMed DOI PMC

Comabella Y., Canabal J., Hurtado A., García-Galano T. (2014). Embryonic Development of Cuban Gar (Atractosteus Tristoechus) under Laboratory Conditions. Anat. Histol. Embryol. 43, 495–502. 10.1111/ahe.12101 PubMed DOI

Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., et al. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339, 819–823. 10.1126/science.1231143 PubMed DOI PMC

Cooper M. S., Virta V. C. (2007). Evolution of Gastrulation in the ray-finned (Actinopterygian) Fishes. J. Exp. Zool. 308B, 591–608. 10.1002/jez.b.21142 PubMed DOI

Crawford K., Diaz Quiroz J. F., Koenig K. M., Ahuja N., Albertin C. B., Rosenthal J. J. C. (2020). Highly Efficient Knockout of a Squid Pigmentation Gene. Curr. Biol. 30, 3484–3490. e4. 10.1016/j.cub.2020.06.099 PubMed DOI PMC

Davis M. C., Dahn R. D., Shubin N. H. (2007). An Autopodial-like Pattern of Hox Expression in the Fins of a Basal Actinopterygian Fish. Nature 447, 473–476. 10.1038/nature05838 PubMed DOI

Dettlaff T. A., Ginsburg A. S., Schmalhausen O. I. (1993). Sturgeon Fishes—Developmental Biology and Aquaculture. New York: Springer.

Deveau H., Garneau J. E., Moineau S. (2010). CRISPR/Cas System and its Role in Phage-Bacteria Interactions. Annu. Rev. Microbiol. 64, 475–493. 10.1146/annurev.micro.112408.134123 PubMed DOI

Doyon Y., McCammon J. M., Miller J. C., Faraji F., Ngo C., Katibah G. E., et al. (2008). Heritable Targeted Gene Disruption in Zebrafish Using Designed Zinc-finger Nucleases. Nat. Biotechnol. 26, 702–708. 10.1038/nbt1409 PubMed DOI PMC

Du K., Stöck M., Kneitz S., Klopp C., Woltering J. M., Adolfi M. C., et al. (2020). The Sterlet sturgeon Genome Sequence and the Mechanisms of Segmental Rediploidization. Nat. Ecol. Evol. 4, 841–852. 10.1038/s41559-020-1166-x PubMed DOI PMC

Faruqi A. F., Egholm M., Glazer P. M. (1998). Peptide Nucleic Acid-Targeted Mutagenesis of a Chromosomal Gene in Mouse Cells. Proc. Natl. Acad. Sci. 95, 1398–1403. 10.1073/pnas.95.4.1398 PubMed DOI PMC

Fei J.-F., Schuez M., Tazaki A., Taniguchi Y., Roensch K., Tanaka E. M. (2014). CRISPR-mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration. Stem Cel Rep. 3, 444–459. 10.1016/j.stemcr.2014.06.018 PubMed DOI PMC

Fu Y., Foden J. A., Khayter C., Maeder M. L., Reyon D., Joung J. K., et al. (2013). High-frequency Off-Target Mutagenesis Induced by CRISPR-Cas Nucleases in Human Cells. Nat. Biotechnol. 31, 822–826. 10.1038/nbt.2623 PubMed DOI PMC

Funk E. C., Breen C., Sanketi B. D., Kurpios N., McCune A. (2020). Changes in Nkx2.1, Sox2, Bmp4 , and Bmp16 Expression Underlying the Lung‐to‐gas Bladder Evolutionary Transition in ray‐finned Fishes. Evol. Develop. 22, 384–402. 10.1111/ede.12354 PubMed DOI PMC

Garneau J. E., Dupuis M.-È., Villion M., Romero D. A., Barrangou R., Boyaval P., et al. (2010). The CRISPR/Cas Bacterial Immune System Cleaves Bacteriophage and Plasmid DNA. Nature 468, 67–71. 10.1038/nature09523 PubMed DOI

Gillis J. A., Dahn R. D., Shubin N. H. (2009). Shared Developmental Mechanisms Pattern the Vertebrate Gill Arch and Paired Fin Skeletons. Proc. Natl. Acad. Sci. 106, 5720–5724. 10.1073/pnas.0810959106 PubMed DOI PMC

Gillis J. A. (2011). Hard-to-find Fish Reveals Shared Developmental Toolbox of Evolution Elephant Fish. Available at: https://www.cam.ac.uk/research/news/hard-to-find-fish-reveals-shared-developmental-toolbox-of-evolution (Accessed July 15, 2021).

Gillis J. A., Tidswell O. R. A. (2017). The Origin of Vertebrate Gills. Curr. Biol. 27, 729–732. 10.1016/j.cub.2017.01.022 PubMed DOI PMC

Havelka M., Bytyutskyy D., Symonová R., Ráb P., Flajšhans M. (2016). The Second Highest Chromosome Count Among Vertebrates Is Observed in Cultured sturgeon and Is Associated with Genome Plasticity. Genet. Sel Evol. 48, 12. 10.1186/s12711-016-0194-0 PubMed DOI PMC

Havelka M., Hulák M., Bailie D. A., Prodöhl P. A., Flajšhans M. (2013). Extensive Genome Duplications in Sturgeons: New Evidence from Microsatellite Data. J. Appl. Ichthyol. 29, 704–708. 10.1111/jai.12224 DOI

Hawkins M. B., Henke K., Harris M. P. (2021). Latent Developmental Potential to Form Limb-like Skeletal Structures in Zebrafish. Cell 184, 899–911. e13. 10.1016/j.cell.2021.01.003 PubMed DOI

Hedges S. B. (2002). The Origin and Evolution of Model Organisms. Nat. Rev. Genet. 3, 838–849. 10.1038/nrg929 PubMed DOI

Horvath P., Barrangou R. (2010). CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 327, 167–170. 10.1126/science.1179555 PubMed DOI

Hsu P. D., Lander E. S., Zhang F. (2014). Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 157, 1262–1278. 10.1016/j.cell.2014.05.010 PubMed DOI PMC

Hsu P. D., Scott D. A., Weinstein J. A., Ran F. A., Konermann S., Agarwala V., et al. (2013). DNA Targeting Specificity of RNA-Guided Cas9 Nucleases. Nat. Biotechnol. 31, 827–832. 10.1038/nbt.2647 PubMed DOI PMC

Huang P., Xiao A., Zhou M., Zhu Z., Lin S., Zhang B. (2011). Heritable Gene Targeting in Zebrafish Using Customized TALENs. Nat. Biotechnol. 29, 699–700. 10.1038/nbt.1939 PubMed DOI

Hughes L. C., Ortí G., Huang Y., Sun Y., Baldwin C. C., Thompson A. W., et al. (2018). Comprehensive Phylogeny of ray-finned Fishes (Actinopterygii) Based on Transcriptomic and Genomic Data. Proc. Natl. Acad. Sci. USA 115, 6249–6254. 10.1073/pnas.1719358115 PubMed DOI PMC

Hwang W. Y., Fu Y., Reyon D., Maeder M. L., Tsai S. Q., Sander J. D., et al. (2013). Efficient Genome Editing in Zebrafish Using a CRISPR-Cas System. Nat. Biotechnol. 31 (3), 227–229. 10.1038/nbt.2501 PubMed DOI PMC

Jansen G., Hazendonk E., Thijssen K. L., Plasterk R. H. A. (1997). Reverse Genetics by Chemical Mutagenesis in Caenorhabditis elegans . Nat. Genet. 17, 119–121. 10.1038/ng0997-119 PubMed DOI

Jao L.-E., Wente S. R., Chen W. (2013). Efficient Multiplex Biallelic Zebrafish Genome Editing Using a CRISPR Nuclease System. Proc. Natl. Acad. Sci. USA 110, 13904–13909. 10.1073/pnas.1308335110 PubMed DOI PMC

Jao L.-E., Wente S. R., Chen W. (2013). Efficient Multiplex Biallelic Zebrafish Genome Editing Using a CRISPR Nuclease System. Proc. Natl. Acad. Sci. USA 110, 13904–13909. 10.1073/pnas.1308335110 PubMed DOI PMC

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337, 816–821. 10.1126/science.1225829 PubMed DOI PMC

Kaiser K., Goodwin S. F. (1990). "Site-selected" Transposon Mutagenesis of Drosophila. Proc. Natl. Acad. Sci. 87, 1686–1690. 10.1073/pnas.87.5.1686 PubMed DOI PMC

Kiyonari H., Kaneko M., Abe T., Shiraishi A., Yoshimi R., Inoue K.-i., et al. (2021). Targeted Gene Disruption in a Marsupial, Monodelphis Domestica, by CRISPR/Cas9 Genome Editing. Curr. Biol. 31, 3956–3963. 10.1016/j.cub.2021.06.056 PubMed DOI

Komor A. C., Badran A. H., Liu D. R. (2017). CRISPR-based Technologies for the Manipulation of Eukaryotic Genomes. Cell 168, 20–36. 10.1016/j.cell.2016.10.044 PubMed DOI PMC

Kuratani S., Ota K. G. (2008). Hagfish (Cyclostomata, Vertebrata): Searching for the Ancestral Developmental Plan of Vertebrates. Bioessays 30, 167–172. 10.1002/bies.20701 PubMed DOI

Makarova K. S., Haft D. H., Barrangou R., Brouns S. J. J., Charpentier E., Horvath P., et al. (2011). Evolution and Classification of the CRISPR-Cas Systems. Nat. Rev. Microbiol. 9, 467–477. 10.1038/nrmicro2577 PubMed DOI PMC

Mali P., Yang L., Esvelt K. M., Aach J., Guell M., Dicarlo J. E., et al. (2013). RNA-guided Human Genome Engineering via Cas9. Science 339, 823–826. 10.1126/science.1232033 PubMed DOI PMC

Martin A., Serano J. M., Jarvis E., Bruce H. S., Wang J., Ray S., et al. (2016). CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution. Curr. Biol. 26, 14–26. 10.1016/j.cub.2015.11.021 PubMed DOI

Meng X., Noyes M. B., Zhu L. J., Lawson N. D., Wolfe S. A. (2008). Targeted Gene Inactivation in Zebrafish Using Engineered Zinc-finger Nucleases. Nat. Biotechnol. 26, 695–701. 10.1038/nbt1398 PubMed DOI PMC

Minarik M., Stundl J., Fabian P., Jandzik D., Metscher B. D., Psenicka M., et al. (2017). Pre-oral Gut Contributes to Facial Structures in Non-teleost Fishes. Nature 547 (7662), 209–212. 10.1038/nature23008 PubMed DOI

Mizuno S., Dinh T. T. H., Kato K., Mizuno-Iijima S., Tanimoto Y., Daitoku Y., et al. (2014). Simple Generation of Albino C57BL/6J Mice with G291T Mutation in the Tyrosinase Gene by the CRISPR/Cas9 System. Mamm. Genome 25, 327–334. 10.1007/s00335-014-9524-0 PubMed DOI

Modrell M. S., Bemis W. E., Northcutt R. G., Davis M. C., Baker C. V. H. (2011). Electrosensory Ampullary Organs Are Derived from Lateral Line Placodes in Bony Fishes. Nat. Commun. 2, 496. 10.1038/ncomms1502 PubMed DOI PMC

Modrell M. S., Lyne M., Carr A. R., Zakon H. H., Buckley D., Campbell A. S., et al. (2017). Insights into Electrosensory Organ Development, Physiology and Evolution from a Lateral Line-Enriched Transcriptome. eLife 6, e24197. 10.7554/eLife.24197 PubMed DOI PMC

Mori S., Nakamura T. (2021). An Evolutionarily Conserved Odontode Gene Regulatory Network Underlies Head Armor Formation in Suckermouth Armored Catfish. bioRxiv. 54. 10.1101/2021.06.21.449322 PubMed DOI PMC

Nakayama T., Fish M. B., Fisher M., Oomen-Hajagos J., Thomsen G. H., Grainger R. M. (2013). Simple and Efficient CRISPR/Cas9-mediated Targeted Mutagenesis inXenopus Tropicalis. Genesis 51, 835–843. 10.1002/dvg.22720 PubMed DOI PMC

Oisi Y., Ota K. G., Kuraku S., Fujimoto S., Kuratani S. (2013). Craniofacial Development of Hagfishes and the Evolution of Vertebrates. Nature 493, 175–180. 10.1038/nature11794 PubMed DOI

Ostaszewska T., Dabrowski K. (2009). "Early Development of Acipenseriformes (Chondrostei", in Development of Non-teleost Fishes, ed by Kunz Y. W., Luer C. A., Kapoor B. G. (New Hampshire: CRC Press; ), 170–229.

Ota K. G., Kuraku S., Kuratani S. (2008). Hagfish Embryology with Reference to the Evolution of the Neural Crest. Nature 446, 672–675. 10.1038/nature05633 PubMed DOI

Ota K. G., Kuratani S. (2008). Developmental Biology of Hagfishes, with a Report on Newly Obtained Embryos of the Japanese Inshore Hagfish, Eptatretus burgeri . Zoolog. Sci. 25, 999–1011. 10.2108/zsj.25.999 PubMed DOI

Ota K. G., Kuratani S. (2006). The History of Scientific Endeavors towards Understanding Hagfish Embryology. Zoolog. Sci. 23, 403–418. 10.2108/zsj.23.403 PubMed DOI

Port F., Chen H.-M., Lee T., Bullock S. L. (2014). Optimized CRISPR/Cas Tools for Efficient Germline and Somatic Genome Engineering in Drosophila. Proc. Natl. Acad. Sci. 111, E2967–E2976. 10.1073/pnas.1405500111 PubMed DOI PMC

Rajkov J., Shao Z., Berrebi P. (2014). Evolution of Polyploidy and Functional Diploidization in Sturgeons: Microsatellite Analysis in 10 Sturgeon Species. J. Hered. 105, 521–531. 10.1093/jhered/esu027 PubMed DOI

Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F. (2013). Genome Engineering Using the CRISPR-Cas9 System. Nat. Protoc. 8, 2281–2308. 10.1038/nprot.2013.143 PubMed DOI PMC

Rasys A. M., Park S., Ball R. E., Alcala A. J., Lauderdale J. D., Menke D. B. (2019). CRISPR-Cas9 Gene Editing in Lizards through Microinjection of Unfertilized Oocytes. Cel Rep. 28, 2288–2292. e3. 10.1016/j.celrep.2019.07.089 PubMed DOI PMC

Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. (1988). A Stable Genomic Source of P Element Transposase in Drosophila melanogaster . Genetics 118, 461–470. 10.1093/genetics/118.3.461 PubMed DOI PMC

Saito T., Pšenička M., Goto R., Adachi S., Inoue K., Arai K., et al. (2014). The Origin and Migration of Primordial Germ Cells in Sturgeons. PLoS One 9, e86861. 10.1371/journal.pone.0086861 PubMed DOI PMC

Sive H. L., Grainger R. M., Harland R. M. (2000). Early Development of Xenopus laevis: A Laboratory Manual. NY: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

Square T. A., Jandzik D., Massey J. L., Romášek M., Stein H. P., Hansen A. W., et al. (2020). Evolution of the Endothelin Pathway Drove Neural Crest Cell Diversification. Nature 585, 563–568. 10.1038/s41586-020-2720-z PubMed DOI

Square T., Romášek M., Jandzik D., Cattell M. V., Klymkowsky M., Medeiros D. M. (2015). CRISPR/Cas9-mediated Mutagenesis in the Sea Lamprey, Petromyzon marinus: a Powerful Tool for Understanding Ancestral Gene Functions in Vertebrates. Development (Cambridge, England) 142 (23), 4180–4187. 10.1242/dev.125609 PubMed DOI PMC

Stolfi A., Gandhi S., Salek F., Christiaen L. (2014). Tissue-specific Genome Editing in Ciona Embryos by CRISPR/Cas9. Development 141, 4115–4120. 10.1242/dev.114488 PubMed DOI PMC

Stundl J., Pospisilova A., Jandzik D., Fabian P., Dobiasova B., Minarik M., et al. (2019). Bichir External Gills Arise via Heterochronic Shift that Accelerates Hyoid Arch Development. Elife 8, 1–13. 10.7554/eLife.43531 PubMed DOI PMC

Stundl J., Pospisilova A., Matějková T., Psenicka M., Bronner M. E., Cerny R. (2020). Migratory Patterns and Evolutionary Plasticity of Cranial Neural Crest Cells in ray-finned Fishes. Develop. Biol. 467 (1-2), 14–29. 10.1016/j.ydbio.2020.08.007 PubMed DOI PMC

Suzuki M., Hayashi T., Inoue T., Agata K., Hirayama M., Suzuki M., et al. (2018). Cas9 Ribonucleoprotein Complex Allows Direct and Rapid Analysis of Coding and Noncoding Regions of Target Genes in Pleurodeles waltl Development and Regeneration. Develop. Biol. 443, 127–136. 10.1016/j.ydbio.2018.09.008 PubMed DOI

Symonová R., Havelka M., Amemiya C. T., Howell W. M., Kořínková T., Flajšhans M., et al. (2017). Molecular Cytogenetic Differentiation of Paralogs of Hox Paralogs in Duplicated and Re-diploidized Genome of the North American Paddlefish (Polyodon spathula). BMC Genet. 18, 1–12. 10.1186/s12863-017-0484-8 PubMed DOI PMC

Takeuchi M., Takahashi M., Okabe M., Aizawa S. (2009). Germ Layer Patterning in Bichir and Lamprey; an Insight into its Evolution in Vertebrates. Develop. Biol. 332, 90–102. 10.1016/j.ydbio.2009.05.543 PubMed DOI

Thompson A. W., Hawkins M. B., Parey E., Wcisel D. J., Ota T., Kawasaki K., et al. (2021). The Bowfin Genome Illuminates the Developmental Evolution of Ray-Finned Fishes. Nat. Genet. 53 (9), 1373–1384. 10.1038/s41588-021-00914-y PubMed DOI PMC

Trible W., Olivos-Cisneros L., McKenzie S. K., Saragosti J., Chang N.-C., Matthews B. J., et al. (2017). Orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants. Cell 170, 727–735. e10. 10.1016/j.cell.2017.07.001 PubMed DOI PMC

Véron N., Qu Z., Kipen P. A. S., Hirst C. E., Marcelle C. (2015). CRISPR Mediated Somatic Cell Genome Engineering in the Chicken. Develop. Biol. 407, 68–74. 10.1016/j.ydbio.2015.08.007 PubMed DOI

Waaijers S., Portegijs V., Kerver J., Lemmens B. B. L. G., Tijsterman M., van den Heuvel S., et al. (2013). CRISPR/Cas9-targeted Mutagenesis in Caenorhabditis elegans . Genetics 195, 1187–1191. 10.1534/genetics.113.156299 PubMed DOI PMC

Wang F., Shi Z., Cui Y., Guo X., Shi Y.-B., Chen Y. (2015). Targeted Gene Disruption in Xenopus laevis Using CRISPR/Cas9. Cell Biosci 5, 15. 10.1186/s13578-015-0006-1 PubMed DOI PMC

Wood A. J., Lo T.-W., Zeitler B., Pickle C. S., Ralston E. J., Lee A. H., et al. (2011). Targeted Genome Editing across Species Using ZFNs and TALENs. Science 333, 307. 10.1126/science.1207773 PubMed DOI PMC

Yen S.-T., Zhang M., Deng J. M., Usman S. J., Smith C. N., Parker-thornburg J., et al. (2014). Somatic Mosaicism and Allele Complexity Induced by CRISPR/Cas9 RNA Injections in Mouse Zygotes. Develop. Biol. 393, 3–9. 10.1016/j.ydbio.2014.06.017 PubMed DOI PMC

York J. R., Yuan T., Zehnder K., McCauley D. W. (2017). Lamprey Neural Crest Migration Is Snail-dependent and Occurs without a Differential Shift in Cadherin Expression. Develop. Biol. 428 (1), 176–187. 10.1016/j.ydbio.2017.06.002 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...