Bichir external gills arise via heterochronic shift that accelerates hyoid arch development

. 2019 Mar 26 ; 8 () : . [epub] 20190326

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30910008

Grantová podpora
1448514 Charles University Grant Agency - International
640016 Charles University Grant Agency - International
220213 Charles University Grant Agency - International
16-23836S Czech Science Foundation - International
726516 Charles University Grant Agency - International
Grant SVV 260434/2019 Charles University - International
Research Centre program 204069 Charles University - International
1/0415/17 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV - International
751066 H2020 Marie Skłodowska-Curie Actions - International
260434/2019 The Charles University grant SVV - International
204069 The Charles University Research Centre program - International
1/0415/17 The grant of the Scientific Grant Agency of Slovak Republic VEGA - International
751066 The European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant - International

In most vertebrates, pharyngeal arches form in a stereotypic anterior-to-posterior progression. To gain insight into the mechanisms underlying evolutionary changes in pharyngeal arch development, here we investigate embryos and larvae of bichirs. Bichirs represent the earliest diverged living group of ray-finned fishes, and possess intriguing traits otherwise typical for lobe-finned fishes such as ventral paired lungs and larval external gills. In bichir embryos, we find that the anteroposterior way of formation of cranial segments is modified by the unique acceleration of the entire hyoid arch segment, with earlier and orchestrated development of the endodermal, mesodermal, and neural crest tissues. This major heterochronic shift in the anteroposterior developmental sequence enables early appearance of the external gills that represent key breathing organs of bichir free-living embryos and early larvae. Bichirs thus stay as unique models for understanding developmental mechanisms facilitating increased breathing capacity.

Zobrazit více v PubMed

Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development. 2002;129:4613–4625. doi: 10.1242/dev.02408. PubMed DOI

Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM. Hoxa2 knockdown in xenopus results in hyoid to mandibular homeosis. Developmental Dynamics : An Official Publication of the American Association of Anatomists. 2005;234:858–867. doi: 10.1002/dvdy.20567. PubMed DOI

Brand M, Granato M, Nusslein-Volhard C. Keeping and raising zebrafish. In: Nusslein-Volhard C, Dahm R, editors. In Zebrafish: A Practical Approach. Oxford University Press; 2002. pp. 7–37.

Cerny R, Meulemans D, Berger J, Wilsch-Bräuninger M, Kurth T, Bronner-Fraser M, Epperlein HH. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Developmental Biology. 2004;266:252–269. doi: 10.1016/j.ydbio.2003.09.039. PubMed DOI

Cheung M, Briscoe J. Neural crest development is regulated by the transcription factor Sox9. Development. 2003;130:5681–5693. doi: 10.1242/dev.00808. PubMed DOI

Choe CP, Crump JG. Dynamic epithelia of the developing vertebrate face. Current Opinion in Genetics & Development. 2015;32:66–72. doi: 10.1016/j.gde.2015.02.003. PubMed DOI PMC

Clack JA. Devonian climate change, breathing, and the origin of the tetrapod stem group. Integrative and Comparative Biology. 2007;47:510–523. doi: 10.1093/icb/icm055. PubMed DOI

Coates MI, Clack JA. Fish-like gills and breathing in the earliest known tetrapod. Nature. 1991;352:234–236. doi: 10.1038/352234a0. DOI

Couly G, Creuzet S, Bennaceur S, Vincent C, Le Douarin NM. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development. 2002;129:1061–1073. PubMed

Crump JG, Maves L, Lawson ND, Weinstein BM, Kimmel CB. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development. 2004;131:5703–5716. doi: 10.1242/dev.01444. PubMed DOI

Diedhiou S, Bartsch P. Staging of the early development of Polypterus (Cladistia: Actinopterygii) In: Kunz-Ramsay Y. W, Luer C. A, Kapoor B. G, editors. Development of Non-Teleost Fishes. Enfield: Science Publishers; 2009. pp. 104–109. DOI

Duellman WE, Trueb L. Biology of Amphibians. New York: McGraw-Hill; 1994.

Ericsson R, Cerny R, Falck P, Olsson L. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the mexican axolotl, ambystoma mexicanum. Developmental Dynamics. 2004;231:237–247. doi: 10.1002/dvdy.20127. PubMed DOI

Giles S, Xu GH, Near TJ, Friedman M. Early members of 'living fossil' lineage imply later origin of modern ray-finned fishes. Nature. 2017;549:265–268. doi: 10.1038/nature23654. PubMed DOI

Gillis JA, Fritzenwanker JH, Lowe CJ. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proceedings of the Royal Society B: Biological Sciences. 2012;279:237–246. doi: 10.1098/rspb.2011.0599. PubMed DOI PMC

Gillis JA, Tidswell OR. The origin of vertebrate gills. Current Biology. 2017;27:729–732. doi: 10.1016/j.cub.2017.01.022. PubMed DOI PMC

Goodrich ES. Vertebrata Craniata (first fascicle: cyclostomes and fishes) In: Lankester R, editor. Treatise on Zoology. Part 9. London: Adam and Charles Black; 1909.

Graham A. Deconstructing the pharyngeal metamere. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2008;310:336–344. doi: 10.1002/jez.b.21182. PubMed DOI

Graham JB, Wegner NC, Miller LA, Jew CJ, Lai NC, Berquist RM, Frank LR, Long JA. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods. Nature Communications. 2014;5:3022. doi: 10.1038/ncomms4022. PubMed DOI

Graham A, Smith A. Patterning the pharyngeal arches. BioEssays. 2001;23:54–61. doi: 10.1002/1521-1878(200101)23:1<54::AID-BIES1007>3.0.CO;2-5. PubMed DOI

Grevellec A, Tucker AS. The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Seminars in Cell & Developmental Biology. 2010;21:325–332. doi: 10.1016/j.semcdb.2010.01.022. PubMed DOI

Hughes LC, Ortí G, Huang Y, Sun Y, Baldwin CC, Thompson AW, Arcila D, Betancur-R R, Li C, Becker L, Bellora N, Zhao X, Li X, Wang M, Fang C, Xie B, Zhou Z, Huang H, Chen S, Venkatesh B, Shi Q. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS. 2018;115:6249–6254. doi: 10.1073/pnas.1719358115. PubMed DOI PMC

Hunter MP, Prince VE. Zebrafish hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. Developmental Biology. 2002;247:367–389. doi: 10.1006/dbio.2002.0701. PubMed DOI

Jandzik D, Hawkins MB, Cattell MV, Cerny R, Square TA, Medeiros DM. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head. Development. 2014;141:629–638. doi: 10.1242/dev.097261. PubMed DOI

Kerr JG. The development of Polypterus senegalus Cuvier. In: Kerr J. G, editor. Budget Memorial Volume. Cambridge: Cambridge University Press; 1907.

Köntges G, Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development. 1996;122:3229–3242. PubMed

Koop D, Chen J, Theodosiou M, Carvalho JE, Alvarez S, de Lera AR, Holland LZ, Schubert M. Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. EvoDevo. 2014;5:36. doi: 10.1186/2041-9139-5-36. PubMed DOI PMC

Lumsden A, Sprawson N, Graham A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development. 1991;113:1281–1291. PubMed

Metscher BD. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Developmental Dynamics. 2009;238:632–640. doi: 10.1002/dvdy.21857. PubMed DOI

Minarik M, Stundl J, Fabian P, Jandzik D, Metscher BD, Psenicka M, Gela D, Osorio-Pérez A, Arias-Rodriguez L, Horácek I, Cerny R. Pre-oral gut contributes to facial structures in non-teleost fishes. Nature. 2017;547:209–212. doi: 10.1038/nature23008. PubMed DOI

Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137:2605–2621. doi: 10.1242/dev.040048. PubMed DOI

Mitgutsch C, Piekarski N, Olsson L, Haas A. Heterochronic shifts during early cranial neural crest cell migration in two ranid frogs. Acta Zoologica. 2008;89:69–78. doi: 10.1111/j.1463-6395.2007.00295.x. DOI

Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. PNAS. 2003;100:9360–9365. doi: 10.1073/pnas.1631288100. PubMed DOI PMC

Noda M, Miyake T, Okabe M. Development of cranial muscles in the actinopterygian fish Senegal bichir, Polypterus senegalus Cuvier, 1829. Journal of Morphology. 2017;278:450–463. doi: 10.1002/jmor.20636. PubMed DOI

Nokhbatolfoghahai M, Downie JR. The external gills of anuran amphibians: comparative morphology and ultrastructure. Journal of Morphology. 2008;269:1197–1213. doi: 10.1002/jmor.10655. PubMed DOI

Piotrowski T, Nüsslein-Volhard C. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio) Developmental Biology. 2000;225:339–356. doi: 10.1006/dbio.2000.9842. PubMed DOI

Quinlan R, Martin P, Graham A. The role of actin cables in directing the morphogenesis of the pharyngeal pouches. Development. 2004;131:593–599. doi: 10.1242/dev.00950. PubMed DOI

Richardson J, Shono T, Okabe M, Graham A. The presence of an embryonic opercular flap in amniotes. Proceedings of the Royal Society B: Biological Sciences. 2012;279:224–229. doi: 10.1098/rspb.2011.0740. PubMed DOI PMC

Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993;75:1333–1349. doi: 10.1016/0092-8674(93)90620-6. PubMed DOI

Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nature Reviews Neuroscience. 2003;4:806–818. doi: 10.1038/nrn1221. PubMed DOI

Schilling TF. Anterior-posterior patterning and segmentation of the vertebrate head. Integrative and Comparative Biology. 2008;48:658–667. doi: 10.1093/icb/icn081. PubMed DOI PMC

Schoch RR, Witzmann F. Bystrow’s Paradox - gills, fossils, and the fish-to-tetrapod transition. Acta Zoologica. 2011;92:251–265. doi: 10.1111/j.1463-6395.2010.00456.x. DOI

Shone V, Graham A. Endodermal/ectodermal interfaces during pharyngeal segmentation in vertebrates. Journal of Anatomy. 2014;225:479–491. doi: 10.1111/joa.12234. PubMed DOI PMC

Square T, Jandzik D, Romášek M, Cerny R, Medeiros DM. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Developmental Biology. 2017;427:219–229. doi: 10.1016/j.ydbio.2016.11.014. PubMed DOI

Standen EM, Du TY, Larsson HC. Developmental plasticity and the origin of tetrapods. Nature. 2014;513:54–58. doi: 10.1038/nature13708. PubMed DOI

Takeuchi M, Okabe M, Aizawa S. The genus polypterus (Bichirs): A fish group diverged at the stem of Ray-Finned fishes (Actinopterygii) Cold Spring Harbor Protocols. 2009;2009:emo117. doi: 10.1101/pdb.emo117. PubMed DOI

Tatsumi N, Kobayashi R, Yano T, Noda M, Fujimura K, Okada N, Okabe M. Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs. Scientific Reports. 2016;6:30580. doi: 10.1038/srep30580. PubMed DOI PMC

Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Developmental Biology. 2012;366:34–54. doi: 10.1016/j.ydbio.2011.12.041. PubMed DOI

Tokita M, Schneider RA. Developmental origins of species-specific muscle pattern. Developmental Biology. 2009;331:311–325. doi: 10.1016/j.ydbio.2009.05.548. PubMed DOI PMC

Walshe J, Mason I. Fgf signalling is required for formation of cartilage in the head. Developmental Biology. 2003;264:522–536. doi: 10.1016/j.ydbio.2003.08.010. PubMed DOI

Warga RM, Nüsslein-Volhard C. Origin and development of the zebrafish endoderm. Development. 1999;126:827–838. PubMed

Willey A. The later larval development of amphioxus. The Quarterly Journal of Microscopical Science. 1891;32:183–234.

Witzmann F. The external gills of paleozoic amphibians. Neues Jahrbuch Für Geologie Und Paläontologie Abhandlungen. 2004;232:375–401.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sturgeon gut development: a unique yolk utilization strategy among vertebrates

. 2024 ; 12 () : 1358702. [epub] 20240530

Pre-mandibular pharyngeal pouches in early non-teleost fish embryos

. 2023 Sep 13 ; 290 (2006) : 20231158. [epub] 20230913

Evolution of the nitric oxide synthase family in vertebrates and novel insights in gill development

. 2022 Aug 10 ; 289 (1980) : 20220667. [epub] 20220810

Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates

. 2022 ; 10 () : 750833. [epub] 20220210

The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits

. 2022 Feb ; 97 (1) : 414-447. [epub] 20211013

Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes

. 2020 Nov 01 ; 467 (1-2) : 14-29. [epub] 20200821

Oral and Palatal Dentition of Axolotl Arises From a Common Tooth-Competent Zone Along the Ecto-Endodermal Boundary

. 2020 ; 8 () : 622308. [epub] 20210111

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...